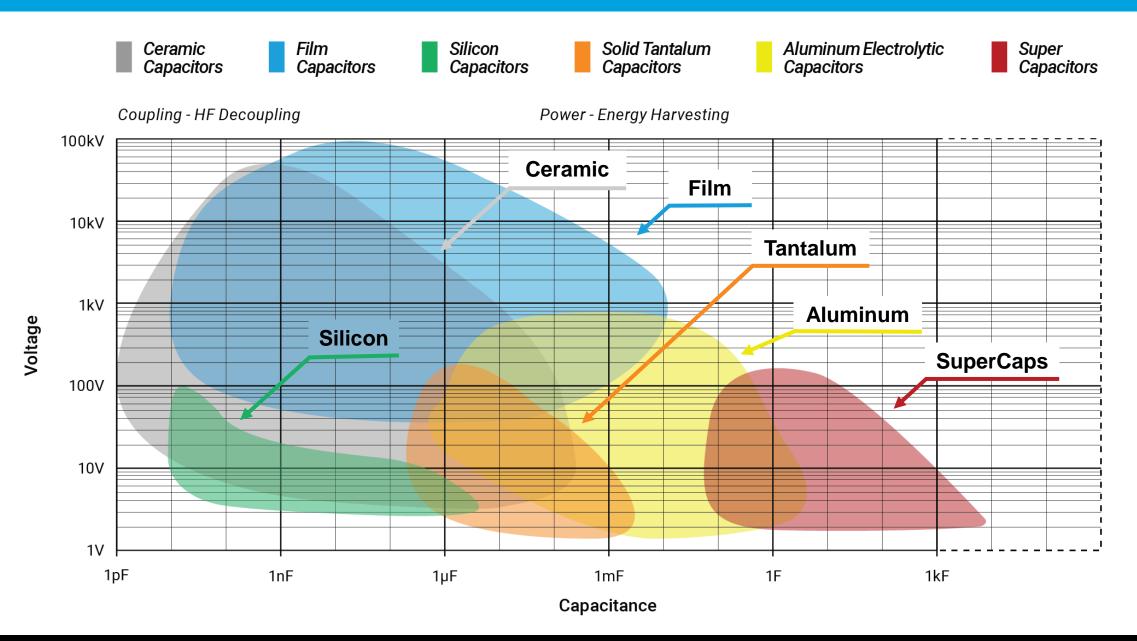
Capacitor Technology

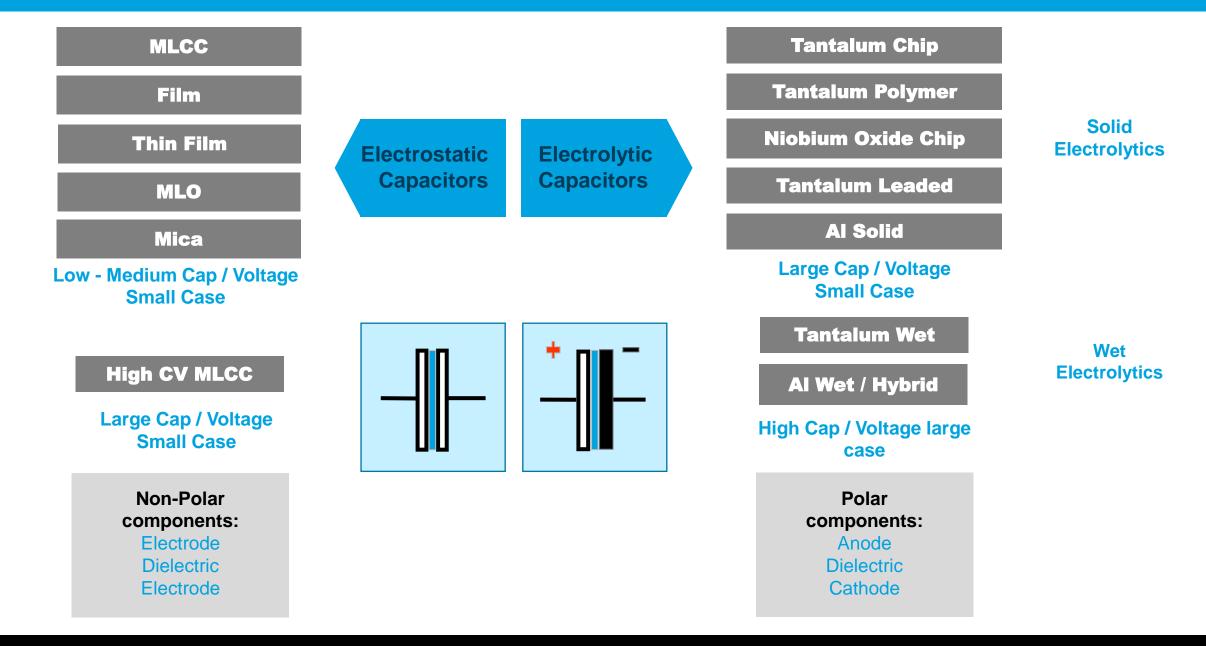
Ron Demcko Sr. Fellow – KYOCERA AVX Ron.Demcko@kyocera-avx.com 919-271-0047

Modules

- **Ceramic**
- > MLCCs
- > Stacked
- > Chip Film
- > Wound Film
- > Thin Film
- SuperCaps
- > Aluminum Electrolytic


Goal: Understanding each capacitor technology

1. Construction


2. Performance characteristics are discussed relative to:

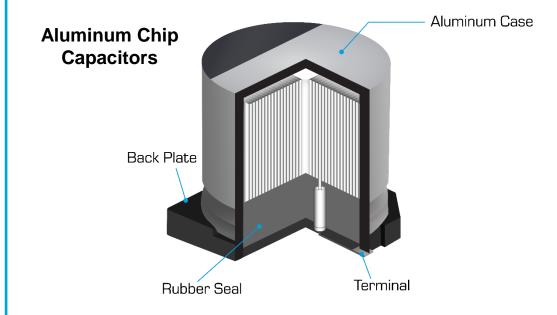
- Time
- Temperature
- Voltage
- Frequency
- 3. Reliability
- 4. Selection guide
- 5. Derating methods
- 6. Simulation links

Capacitors Today

Capacitor Types Technologies

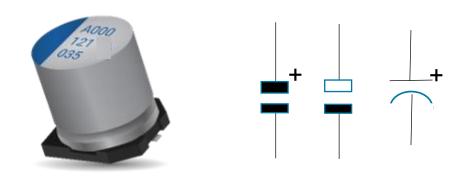
SMT V Chip ALUMINUM ELECTROLYTIC

Typical high volume SMT V chips come in three technologies Generalized ranges shown



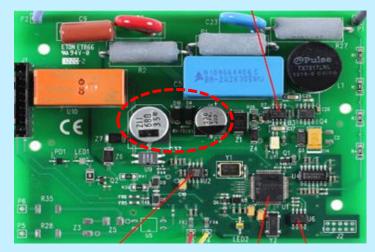
Aluminum Electrolytic

6.3V – 400V 2.2µF – 6800µF -55°C to 125°C


Hybrid Polymer 16V – 125V 10μF – 560μF -55°C to 125°C

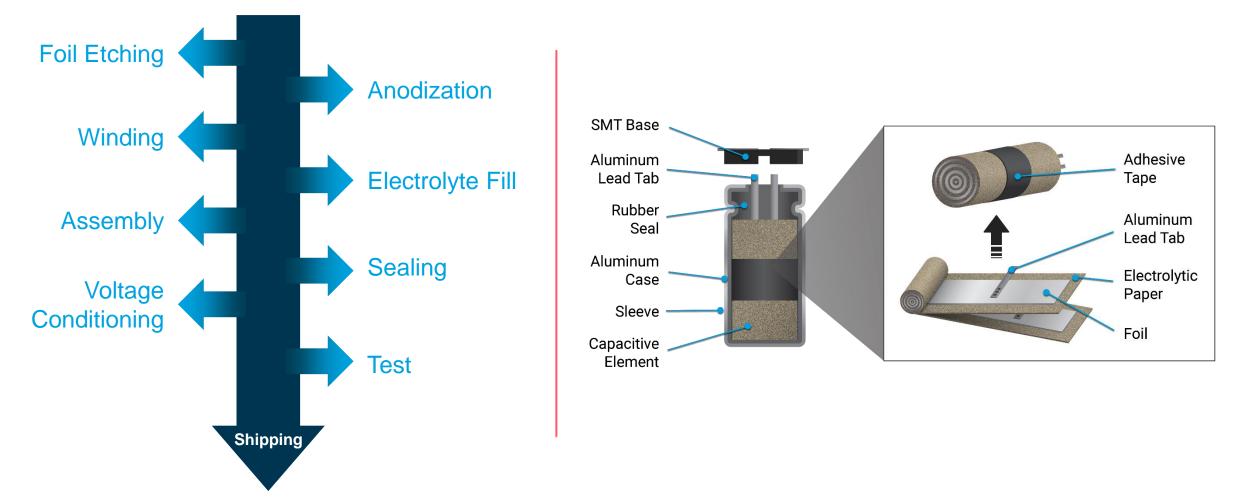
Conductive Polymer 35V – 100V 12μF – 470μF -55°C to 105°C

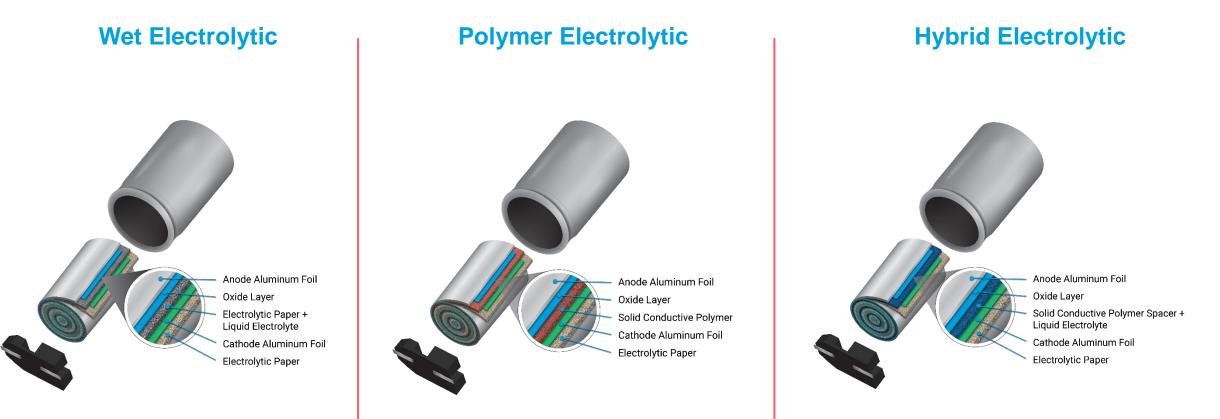
Aluminum Electrolytic Capacitor


- Polarized Bulk Capacitors
- Commonly used in low frequency applications
- Ideal for high ripple loads, bulk filtering & peak power use
- Wide voltage range 6.3V to 400V
- "Generally" Stable
- Acceptable reliability with correct selection & sizing

Electrolyte	Anode Electrode Material	Dielectric	Relative Permittivity	Overall Properties
Wet / Solid	Al - Aluminum	Al2O3	~ 9.3	General Purpose, Large Value, Large RMS
Wet / Solid	Ta - Tantalum	Ta2O5	~ 26	High Performance, Small Size, High Reliability
Solid	NbO – Niobium Oxide	Nb2O5	~40	Small size, intermediate to low to mid power

Aluminum Electrolytic Technology Comparison


Attribute	Wet	Polymer	Hybrid
Benefits	•Low Cost •Low DCL •Broad Value Range	Ultra Low ESRHigher RippleEnhanced Life	•Low ESR •Low DCL •Higher Reliability
Points to Check	•Reliability •ESR	•Higher DCL •Higher Cost	•Higher Cost •Range Limits

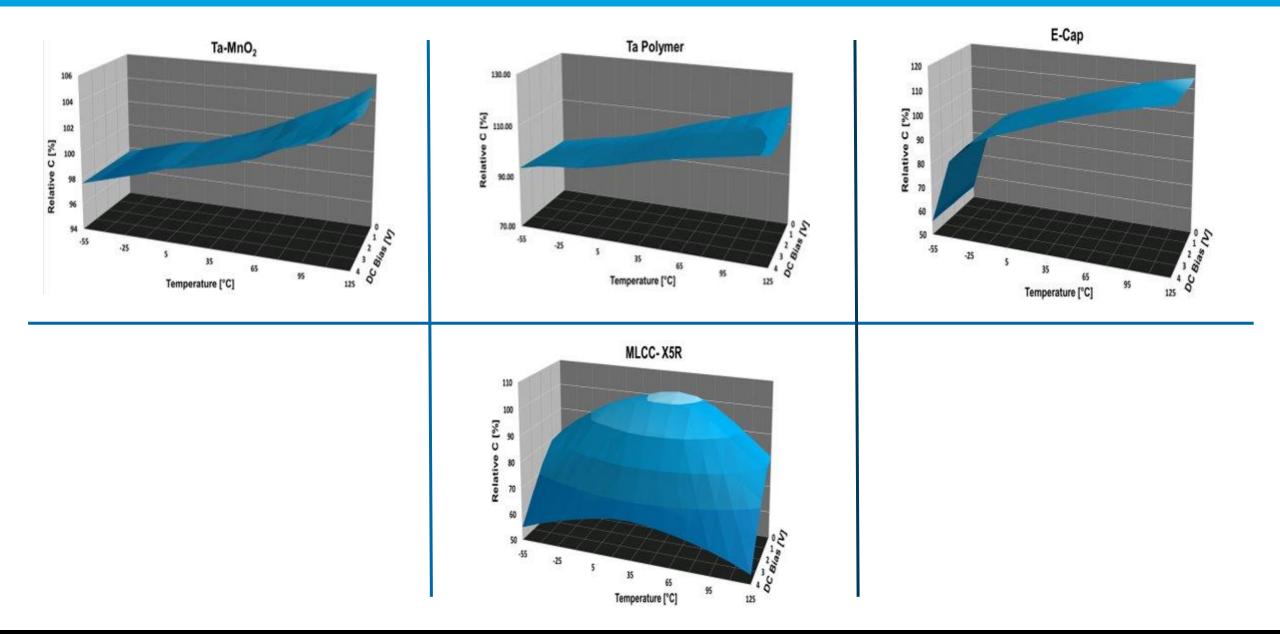

V chip SMT ALUMINUM ELECTROLYTIC Construction & Type

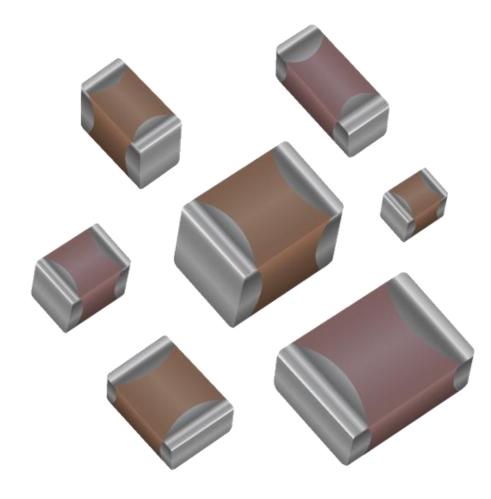
SMT Aluminum Electrolytic Capacitors – Electrolyte Controls Device Characteristics

SMT ALUMINUM ELECTROLYTIC Construction & Type

SMT Aluminum Electrolytic Capacitors – Electrolyte Controls Device Characteristics

Applications by Electrolyte

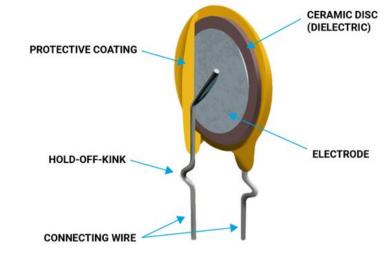


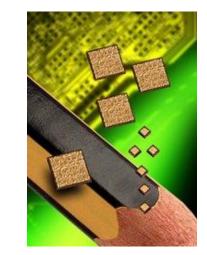

APPLICATION	WET	POLYMER	HYBRID
Power Conversion	++	+++	+++
Filtering	+++	+++	+++
Battery	+++	+	+++
Audio	+++	+++	+++
Base Station	+	++	+++
Industrial	+	+++	+++
Low Temperature	+	+++	++
High Temperature	++	+	+++
Extended Reliability		++	+++
High Vibration	+++	+	+++

SPECIFICATION COMPARISON – 1210 EQUIVALENT EXAMPLE

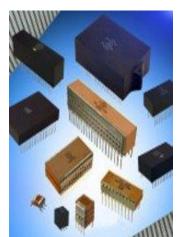
ATTRIBUTES	MLCC		STANDARD TA CHIP		POLYMER TA CHIP	
ATTRIBUTES	COMMERCIAL	AEC-Q200	COMMERCIAL	AEC-Q200	COMMERCIAL	AEC-Q200
Max Capacitance 1210	100uF	10uF	150uF	100uF	220uF	47uF
Voltage Range 1210	4v - 50v	16v - 100v	4v - 50v	4v - 50v	4v - 50v	4v - 50v
Typical ESR 1210	7 - 15mOhms	10 - 40mOhms	300 - 800mOhms	300 - 800mOhms	30 - 200mOhms	70 - 250mOhms
Temperature Range	-55°C - +85°C	-55°C - +125 / +150°C	-55°C - +125°C	-55°C - +125 / +200°C	-55°C - +105 / +125°C	-55°C - +125°C
Base Reliability	1% / 1000hrs	1% / 1000hrs	1% / 1000hrs	(0.05 - 1%) / 1000hrs	1% / 1000hrs	1% / 1000hrs
Primary Failure Mode	Short	Short	Short	Short	Short	Short
Lifetime (10% Cap loss @ Tmax / Vmax)	Indefinite	Indefinite	Indefinite	Indefinite	10,000hrs	10,000hrs
Recommended Voltage Derating	20%	20%	50%	50%	20%	20%
DISADVANTAGES	COMMERCIAL	AEC-Q200	COMMERCIAL	AEC-Q200	COMMERCIAL	AEC-Q200
Voltage Coefficient	Cap Loss vs V	Cap Loss vs V				
Piezo Noise	@ Audio Frequencies	@ Audio Frequencies				
Reverse Voltage			Not Allowed	Not Allowed	Not Allowed	Not Allowed

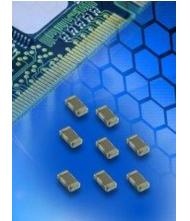
Electrolytic vs MLCC X5R Stability

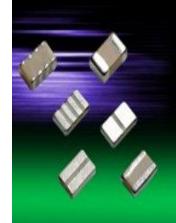


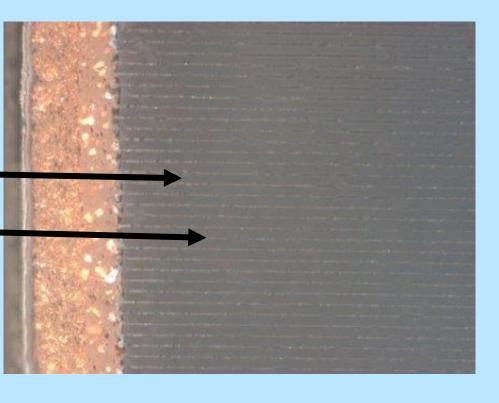

Multi-Layer Ceramic Capacitors (MLCC)

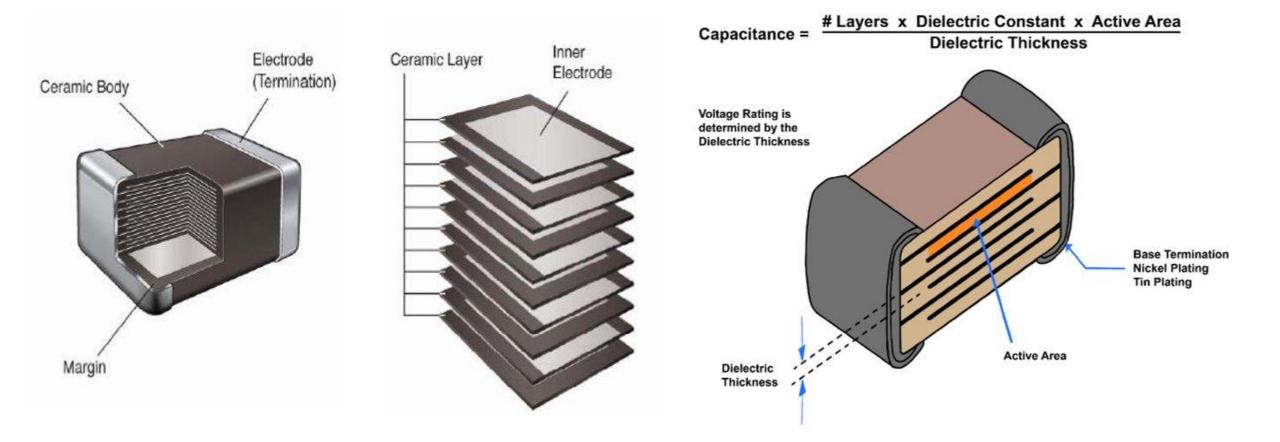
Ceramic Capacitor Types


MLCCs are the most common capacitor type used

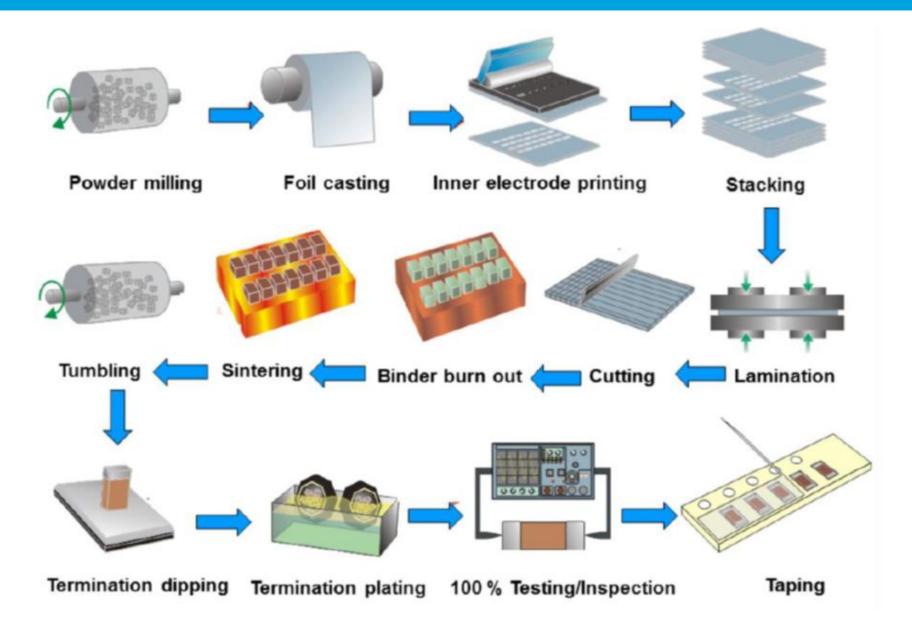






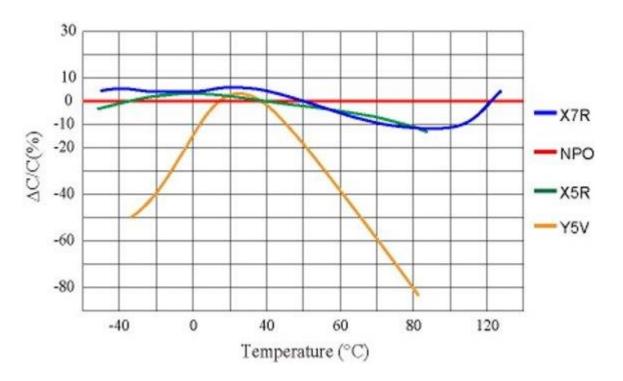

Ceramic Capacitors

Electrostatic Capacitors


- Fixed Value
- Ceramic is the dielectric
- Metal is the electrode
- Single or multiple layer
- Various shapes/forms
- MOST COMMON is the MLCC
 - Multi-Layer Ceramic Capacitor

MLCC Design Considerations

MLCC Dry Process


MLCC Performance

Mostly controlled by the dielectric

COMMON DIELECTRIC TYPES USED:

TYP E	CLASS	TEMPERATURE RANGE	VARIATION DUE TO TEMPERATURE
C0G	Class I	-55°C to +125°C	+/-15ppm/°C
U2J	Class I	-55°C to +125°C	-750ppm/°C
X8R	Class II	-55°C to +150°C	±15%
X8L	Class II	-55°C to +150°C	±15%, then -40% from 125°C to 150°C
X7R	Class II	-55°C to +125°C	±15%
X7S	Class II	-55°C to +125°C	±22%
X6S	Class II	-55°C to +105°C	±22%
X5R	Class II	-55°C to +85°C	±15%
Y5V	Class III	-30°C to +85°C	+22% / -82%
Z5U	Class III	+10°C to +85°C	+22% / -56%

EXAMPLE OF CAP VS TEMPERATURE:

MLCC Performance

Mostly controlled by the dielectric

Dielectric Stability Code Explanation

First Cl	Se	
LETTER	LOW TEMP	DIC
Х	-55C (-67F)	2
Y	-30C (-22F)	Z
Z	+10C (+50F)	Ľ

Second Character						
DIGIT	HIGH TEMP					
2	+45C (+113F)					
4	+65C (+149F)					
5	+85C (+185F)					
6	+105C (+221F)					
7	+125C (+257F)					

Third Character

LETTER	CHANGE
D	+/-3.3%
E	+/-4.7%
F	+/-7.5%
Р	+/-10%
R	+/-15%
S	+/-22%
Т	+22% / -33%
U	+22% / -56%
V	+22% / -82%

Definitions of Application Classes for Ceramic Capacitors

IEC/EN 60384-1 IEC/EN 60384-8/9/21/22

EIA RS-198

Class I

(or written class 1) Ceramic capacitors offer high stability and low losses for resonant circuit applications.

Class II

(or written class 2) Ceramic capacitors offer high volumetric efficiency with change of capacitance lower than -15% to +15% and a temperature range greater than -55°C to +125°C, for smoothing by-pass, coupling, and decoupling applications.

Class (or written class 3) Ceramic capacitors offer higher volumetric efficiency than EIA class 2 and typically change by -22% to +56% over a lower temperature range of 10°C to 55°C. They can be substituted with EIA class 2-Y5U/Y5V or Z5U/Z5V capacitors.

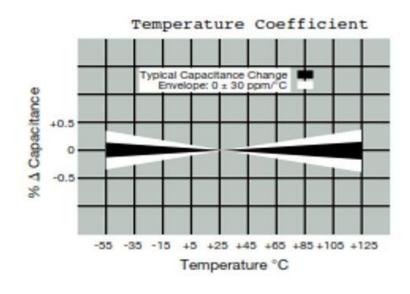
Class IV (or written class

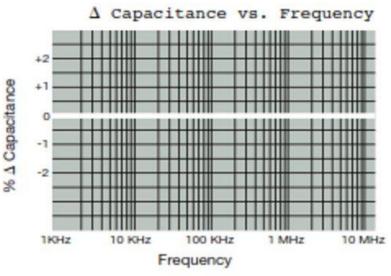
(or written class 4) Ceramic capacitors are barrier layer capacitors which are not standardized anymore.

Class 1 Ceramic capacitors offer high stability and low losses for resonant circuit applications.

Class 2

Ceramic capacitors offer high volumetric efficiency for smoothing, by-pass, coupling, and decoupling applications.


Class 3


Ceramic capacitors are barrier layer capacitors which are not standardized anymore.

Class 1 Type

Ceramic Capacitors

- Very accurate values.
- Formulations exist that can provide temperature-compensation.
- Near Zero capacitance variation with applied voltage, Temperature variation & time.
- Exhibit lowest losses ideal in resonant circuit applications or precisely defined applications – timing, sample & hold, tuning.

Class 2 Type

Ceramic Capacitors

- These have a dielectric with a high permittivity and therefore a **better volumetric efficiency** than class 1 capacitors, but **lower accuracy and stability.**
- The ceramic dielectric is characterized by a nonlinear change of capacitance over the temperature range, varies with applied voltage and has an aging effect (reduces with time).
- The **most widely used** classification used in designs.

- Class 2 capacitors are made of ferrolectric materials such as barium titanate (BaTiO) and suitable additives
- They are suitable for bypass, coupling and decoupling applications or for frequency discriminating circuits where low losses and high stability of capacitance are less important. Also applications that require the capacitor to maintain only a minimum value of capacitance, for example, buffering and filtering in power supplies and coupling and decoupling of electric signals.

Class 2 Type

Ceramic Capacitors

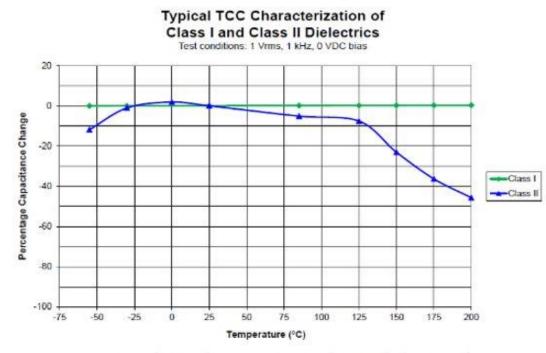
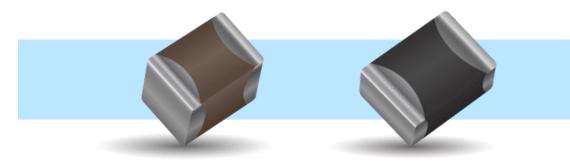
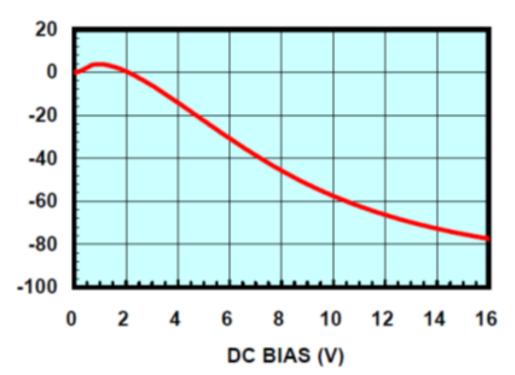



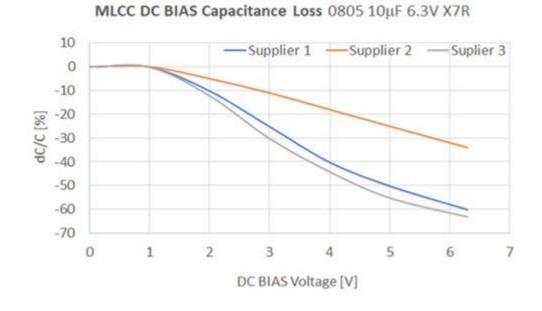
Figure 2: Typical TCC Characterization of Class I and Class II Dielectrics (1VRms, 1 kHz, 0 VDC bias)

Code system regarding to EIA RS-198 for some temperature ranges and inherent change of


Letter code low temperature	Number code upper temperature	Letter code change of capacitance over the temperature range
< = −55 °C (−67 °F)	4 = +65 °C (+149 °F)	P = ±10%
Y = −30 °C (−22 °F)	5 = +85 °C (+185 °F)	R = ±15%
Z = +10 °C (+50 °F)	6 = +105 °C (+221 °F)	S = ±22%
	7 = +125 °C (+257 °F)	T = +22/-33%
	8 = +150 °C (+302 °F)	U = +22/-56%
	9 = +2 00 °C (+392 °F)	V = +22/−82%

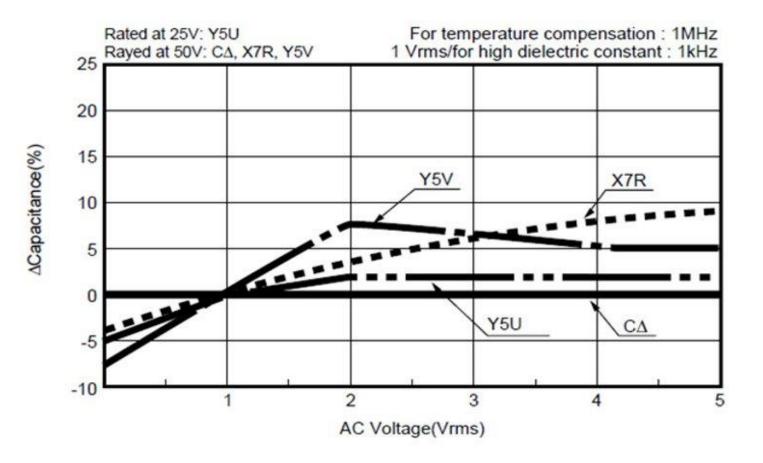
Example: X7R = -55 °C , +125 °C , +- 15% X8R = -55 °C , +150 °C , +-15%

MLCC Stability


DC Bias Examples

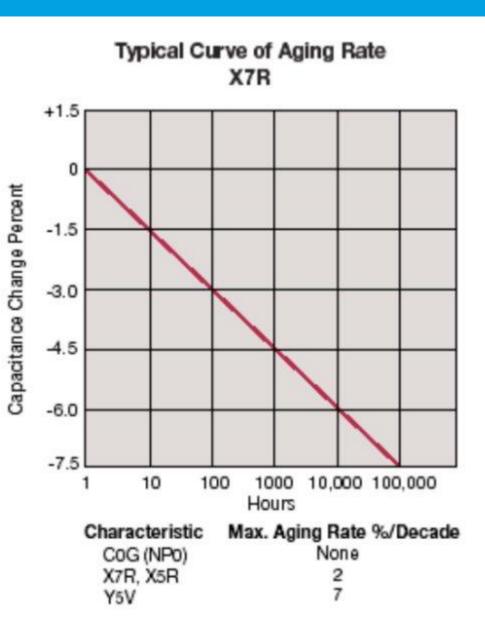
In addition to capacitance changing in accordance to temperature – capacitance changes with applied DC voltage, AC voltage and time.

DC Bias varies by dielectric lot


DC Bias varies by manufacturer

MLCC Stability

AC Bias Example


In addition to capacitance changing in accordance to temperature – capacitance changes with applied DC voltage, AC voltage and time.

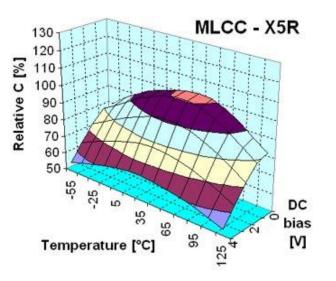
MLCC Stability

Aging Example

In addition to capacitance changing in accordance to temperature –capacitance changes with applied DC voltage, AC voltage and time.

MLCC Stability Recap

If you select a **X5R 0805 10uF 6.3V** capacitor as 5V coupling capacitor in operating amplifier the capacitor may exhibit (depending to manufacturer):


- 60% drop of capacitance due to DC voltage
 5V close to 6.3V maximum rated voltage (as per typical data provided by manufacturer)
- 15% drop of capacitance due to AC voltage being 10mV (as per typical data provided by manufacturer)
- **10% drop of capacitance** due to operating temperature (as per specification sheet)
- 5% drop of capacitance each time decade (as per specification sheet)

The total capacitance value at actual condition is then defined as multiplications of the capacitance drop factors.

$$C_{actual} = C_{rated} * F_{DCV drop} * F_{ACV drop} * F_{temp drop} * F_{ageing drop}$$

(In example above) C_{actual} = 10uF * 0.4 * 0.85 * 0.9 * 0.95 = 2.9uF

The actual capacitance value of the 10uF 6.3V MLCC X5R capacitor at the operating condition above is expected to be 2.9 uF.

Excerpt from EPCI

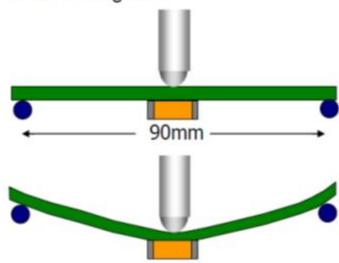
MLCC Reliability Example

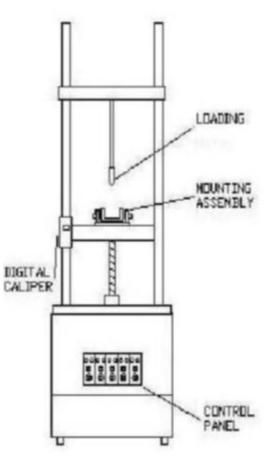
(General example – a snapshot in time)

				AT RATED V & TEMPER		ΑΤ ΤΥ	PICAL USAGE C (0.5 x RVDC & 5		
DIELECTRIC GROUP	LOTS TESTED	PIECES TESTED	DEVICE HOURS	EQUIVALENT DEVICE HOURS	FAILURE RATE (1/)	EQUIVALENT D EVICE HOURS	FAILURE RATE (1/)	FAILURE R ATE FITS - (2/)	MTBF
NPO/COG	366	43390	2.81 x	2.25 x	0.010	1.80 x	1.28 x	0.013	7.80 x
X7R/X7S	3589	453849	2.37 x	1.90 x	0.068	1.52 x	8.50 x	0.085	1.18 x
X5R	12	1305	3.48 x	2.78 x	0.083	1.25 x	1.84 x	1.839	5.44 x

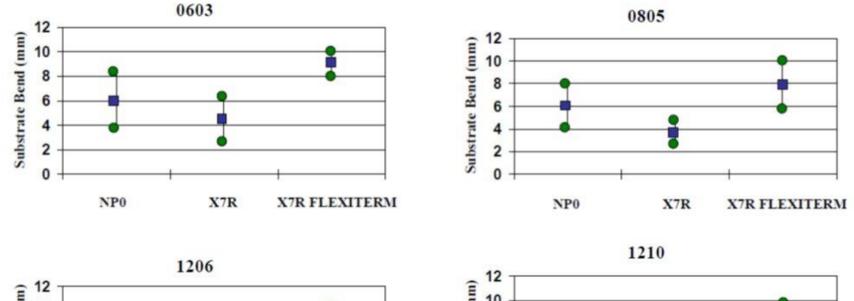
Notes: 1/ Failure Rates are calculated in Percent Per 1000 Hours at 90% Confidence Level 2/ 1 Fit+1Failure in 10⁹ Hours (PPM Per 1000 Hours) at 90% Confidence Level

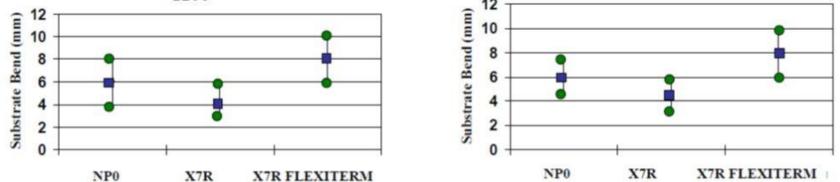
This report contains a summary of FIT rates and MTBF for MLCC Ceramic Capacitors by dielectric formula. Due to the number of device hours required to calculate failure rates, all part numbers are combined by dielectric.

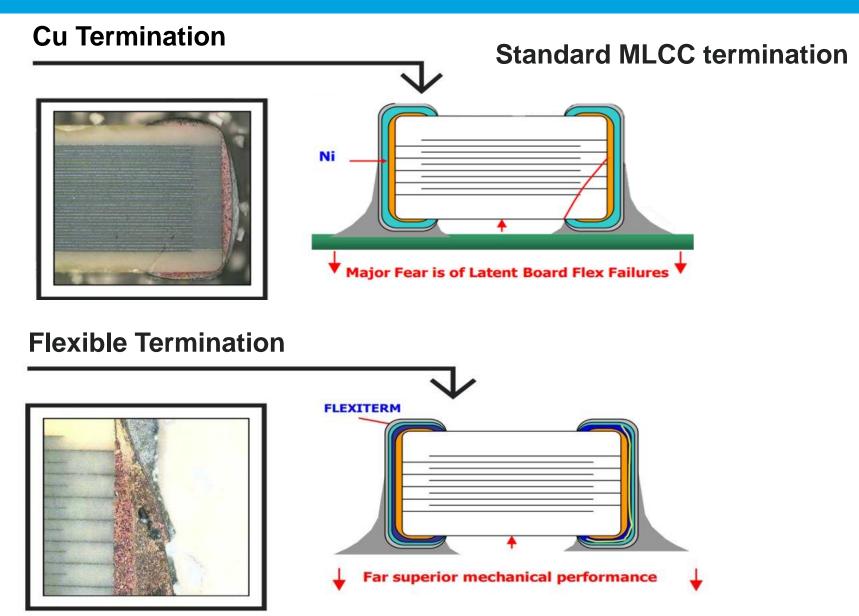

What can make a MLCC Fail? Stress


Board Bend Flex Test Procedure

Test Procedure as per AEC-Q200:

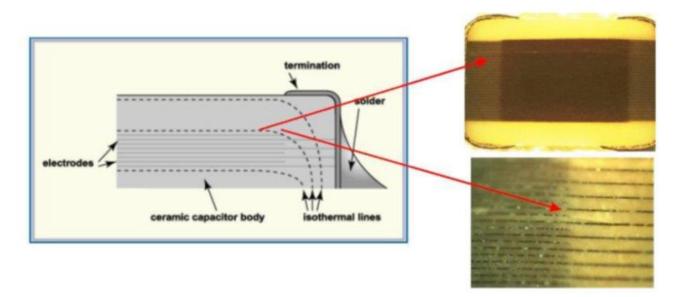

Minimum deflection spec: 2 mm (Class 2)


- Components soldered to FR4 PCB
- · Board connected to the test equipment
- Motorized Moving Ram


MLCC Flexure Sensitivity

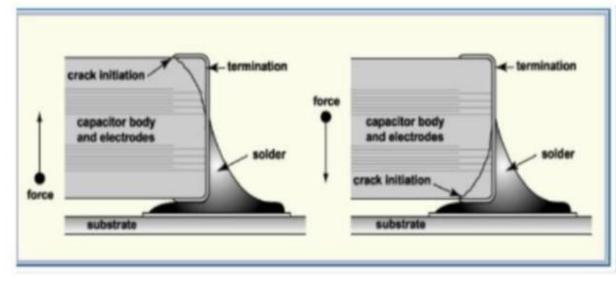
Board flex test is directly proportional to strain measurements on PCB

Mechanical Performance



Cause #1 - Thermal stress damage

Cracks due to thermal stress occur due to rapid heating or cooling when soldering or if the body or terminations are touched directly with a soldering iron. The cracks typically originate at or near the end terminations and may propagate along isothermal lines therefore extending along and between internal electrodes.


This type of cracking can be caused by:

- An overly aggressive soldering profile (i.e., insufficient pre-heat, excessive peak temperature, too rapid ramp up or down).
- Re-working of the components using soldering irons. AVX recommends hot air reflow for re-working of capacitors. However, if soldering irons must be used, the tip must be kept <300°C and should not be allowed to make direct contact with the end terminations of the ceramic body.
- Extended exposure to high temperatures (peak soldering temp, burn-in hotspots)

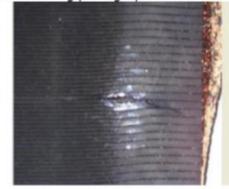
Potential Cause # 2 - failure due to mechanical stress.

One of the most common causes of failure is that the capacitor is stressed mechanically after being soldered to the circuit board as demonstrated below.

Cause # 3 - failure due to component fabrication defect

If a fabrication defect is present inside a ceramic capacitor this may result in a weakness in the diele making it more susceptible to breakdown when under powered conditions. Such defects generally fall into 3 general categories:

1. Voids


- 2. Thin dielectric layers
- 3. Delaminations

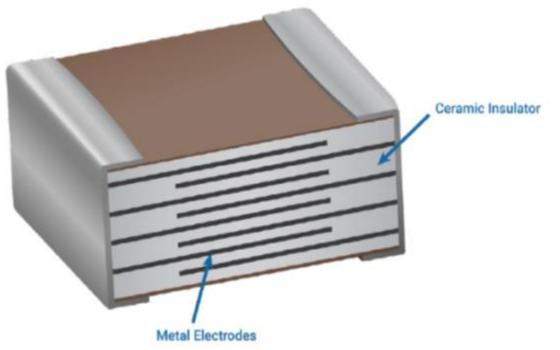
Examples are as follows:

Defect	Cause	Countermeasures
Void	Particle entering the component during initial fabrication, then burning off during firing to leave a small void.	 Product is manufactured on class 10,000 clean room. All lots are 100% tested for voltage and insulation resistance. Samples from each lot are subjected to DPA (cross-sectioning) Samples from each lot are subjected to reliability test at accelerated conditions.
Delamination	Burn-out of organics or sintering process not optimized.	 Samples from each lot are subjected to DPA. All lots are 100% tested for voltage and insulation resistance. Samples from each lot are subjected to reliability test at accelerated conditions.
Thin Dielectric Layers	Ceramic screening error during the deposition of the ceramic slip.	 Samples from each lot are subjected to DPA. All lots are 100% tested for voltage and insulation resistance. Samples from each lot are subjected to reliability test at accelerated conditions.

Cause # 4 - Electrical Overstress

If a component is subjected to a voltage higher than its dielectric can withstand then the dielectric may break down. Typically this results in a "point" type defect with cracking in the vicinity of the breakdown. The following photograph demonstrates a dielectric layer broken down by applying excessive DC voltage.

When the dielectric has been broken down in this fashion, current begins to flow between opposing electrodes, and eventually the component will start to heat until it melts the internal electrodes, ceramic and end terminations. Below is a photograph of one such component purposely shorted by applying excessive voltage and the having had 5 amps applied for a few minutes.



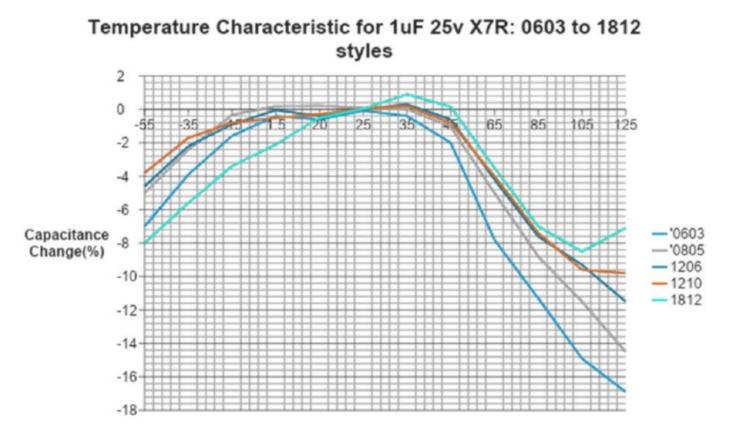
What about MLCC downsizing trend?

In the mid 1990's – typical minimum dielectric thickness was 5um and the MLCC had many hundred layers

Today minimum dielectric thicknesses can be ~ 0,5um and > 1000 dielectric layers

E field stress on the dielectric has increased dramatically

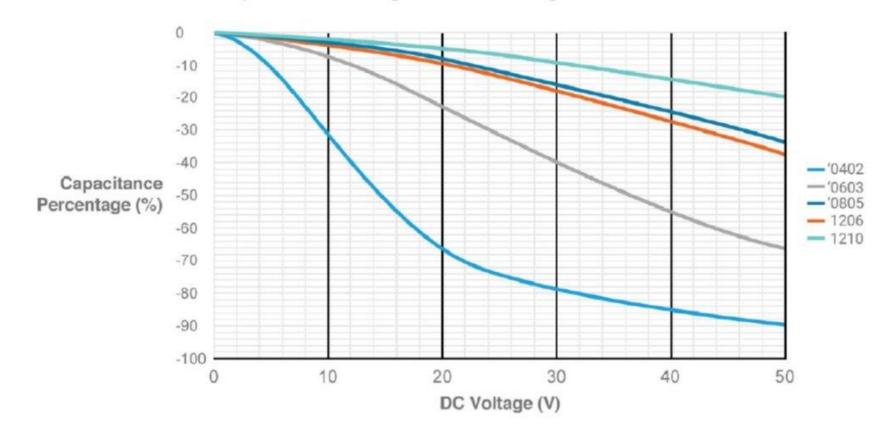
The dielectrics used to attain high capacitance have Ferroelectric properties. The permittivity of those dielectrics decrease with increased electric field (from thinner dielectrics). Recall:



This causes temperature and DC bias instability. Something end users must understand and factor into designs.

See next slides:

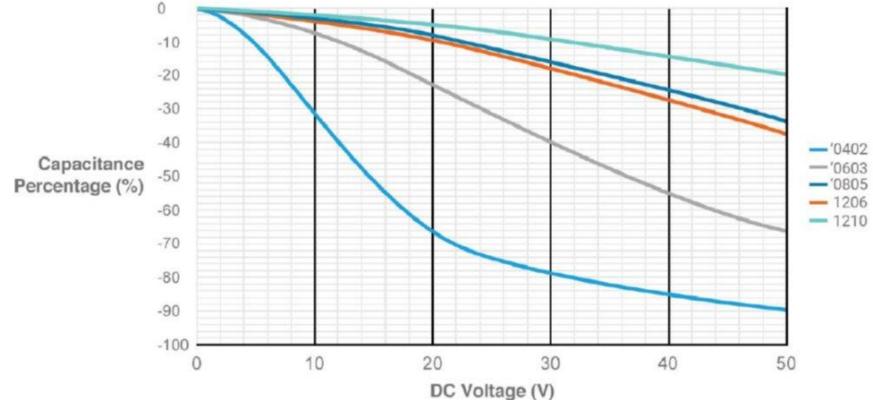
What about MLCC downsizing trend?


High E field effect on temperature stability

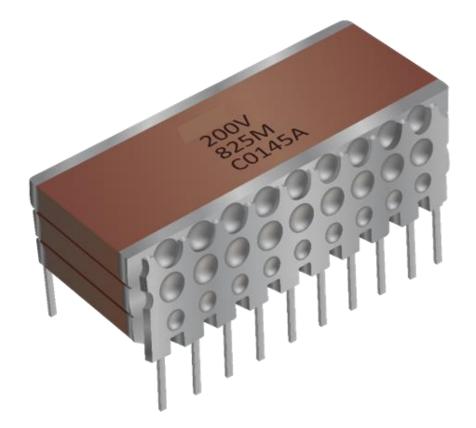
Temperature(DegC)

What about MLCC downsizing trend?

High E field effect on DC Bias stability


Capacitance Change with DC Voltage for 0.1uF 0402 to 1210

What about MLCC downsizing trend?


Dielectric thickness affects reliability

Capacitance Change with DC Voltage for 0.1uF 0402 to 1210

What about Large MLCC Trends?

MLCC Stacked Capacitors

High Reliability – 'Reduced' Inductance 'Reduced' ESR

Why Stacked Ceramics?

Efficiency Through ESR & ESL Reduction

Stacked caps offer improvements in capacitor:

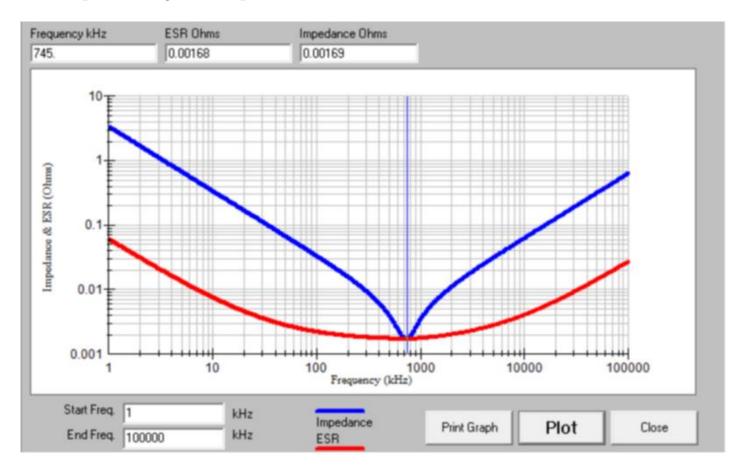
- Weight
- Volume
- Board area
- Reliability
- Electrical performance

Radial Aluminum Electrolytic compared to Stacked Capacitor Note – Multiple stacked capacitor types now exist:

Aluminum Electrolytic Cap

Horizontal stacks

Vertical stacks


Mechanical

Radial Aluminum Electrolytic compared to Stacked Capacitor (in this study)

Parameter	Stacked Ceramic	Radial Electrolytic
Weight - grams	4.6	11.5
Volume - cubic mm	1463	7600
Board Area (X-Y) – square mm	217	211
Height - mm	6.75	36
Weight/uF - grams/uF	0.098	0.0035
Volume/uF - cubic mm/uF	31.13	2.30

Electrical

Stacked MLCC Frequency response

Electrical

Stacked MLCC Frequency response

Т	ypical	ESR Per	formanc	e (mΩ)	
	Aluminum Electrolytic 100µF/50V	Low ESR Solid Tantalum 100µF/10V	Solid Aluminum Electrolytic 100µF/16V	MLCC SMPS 100µF/50V	MLCC SMPS 4.7µF/50V
ESR @ 10KHz	300	72	29	3	66
ESR @ 50KHz	285	67	22	2	23
ESR @ 100KHz	280	62	20	2.5	15
ESR @ 500KHz	265	56	18	4	8
ESR @ 1MHz	265	56	17	7	7.5
ESR @ 5MHz	335	72	17	12.5	8
ESR @ 10MHz	560	91	22	20	14

High Reliability Stacked Capacitor Specifications

- MIL PRF 49470/1
- MIL PRF 49470/2
- DSCC 87106
- DSCC 88011

Horizontal Stacked Ceramic Capacitor Reliability

PRODUCT: Horizontal Stacked MLCC - Multiple Case Sizes

TEST CONDITIONS: DATA BASED ON 1000 OR 2000 HOURS LIFE TESTING AT 200% RATED VOLTAGE AND 125°C

		ge & Temperature oltage, 125ºC)	Non-Standar (50% rated v			
Product Type	Lots Tested	Equivalent Device Hrs.	Failure Rate 1/	Equivalent Device Hrs.	Failure Rate 1/	Failure Rate (FITS**) 2/
Horizontal Stacked - MLCC	98	1.43E+07	0.03	1.14E+11	0.000003	0.03

MTBF 2.94E+10

NOTES:

1/ FAILURE RATES ARE CALCULATED IN PERCENT PER 1000 HOURS AT 90% CONFIDENCE LEVEL

2/ 1 FIT = 1 FAILURE IN 10 E+9 HOURS AT 90% CONFIDENCE LEVEL (PPM/1000 hours)

Total Acceleration (Acc_T) = Temperature Acceleration (Acc_t) x Voltage Acceleration (Acc_V)

Where: $V_t = \text{Test Voltage}$ $V_u = \text{Use Voltage}$ $t_t = \text{Test Temp.}$ $t_u = \text{Use Temp.}$ $Acc_V = \left(\frac{V_T}{V_H}\right)^3$ $Acc_t = 10^{\left(\frac{t_t - t_u}{25}\right)}$

Vertical Stacked Ceramic Capacitor Reliability

PRODUCT: Vertical Stacked MLCC - Multiple Case Sizes

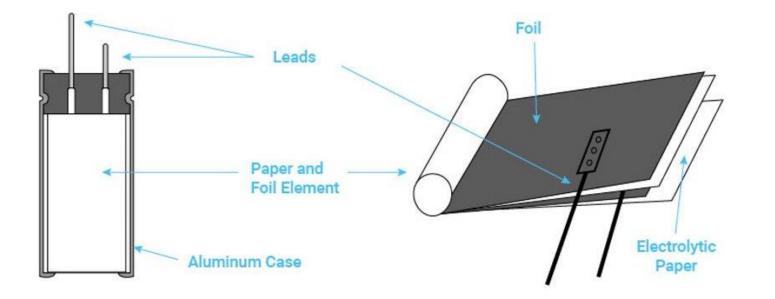
TEST CONDITIONS: DATA BASED ON 1000 OR 2000 HOURS LIFE TESTING AT 200% RATED VOLTAGE AND 125°C

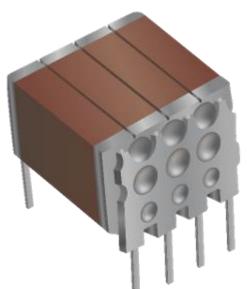
		ge & Temperature oltage, 125ºC)	Non-Standar (50% rated v			
Product Type	Lots Tested	Equivalent Device Hrs.	Failure Rate 1/	Equivalent Device Hrs.	Failure Rate 1/	Failure Rate (FITS**) 2/
Vertical Stacked - MLCC	98	1.43E+07	0.03	1.14E+11	0.000003	0.03

MTBF 2.94E+10

NOTES:

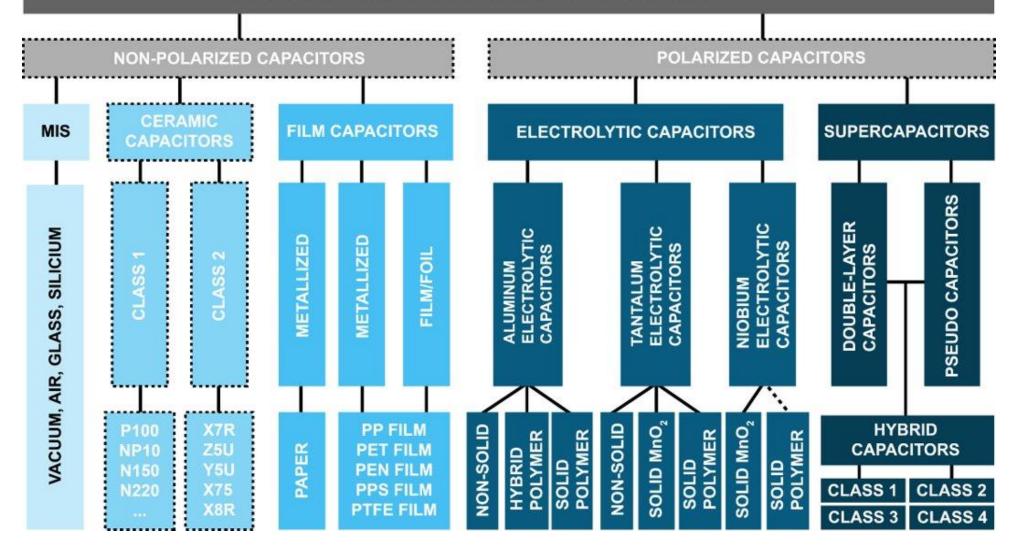
1/ FAILURE RATES ARE CALCULATED IN PERCENT PER 1000 HOURS AT 90% CONFIDENCE LEVEL

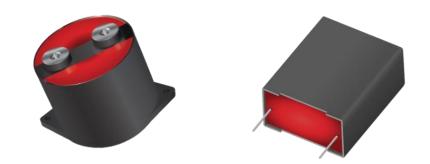

2/ 1 FIT = 1 FAILURE IN 10 E+9 HOURS AT 90% CONFIDENCE LEVEL (PPM/1000 hours)

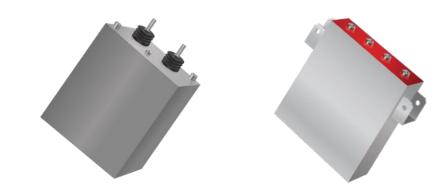

Total Acceleration (Acc_T) = Temperature Acceleration (Acc_t) x Voltage Acceleration (Acc_V)

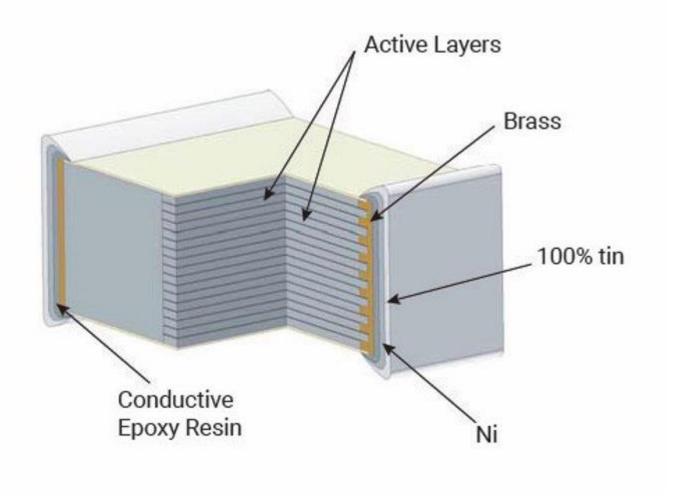
Where: $V_t = \text{Test Voltage}$ $V_u = \text{Use Voltage}$ $t_t = \text{Test Temp.}$ $t_u = \text{Use Temp.}$ $Acc_V = \left(\frac{p_t}{p_u}\right)^3$ $Acc_t = 10^{\left(\frac{t_t - t_u}{25}\right)}$

General Capacitor Selection Rules


Lowered Inductance




Recap



Film Capacitors

Electrostatic Capacitors - Film

FAILSAFE – Does not short

- Fixed Value
- Ceramic is the dielectric
- Metal is the electrode
- Multiple layers
- Various shapes/forms

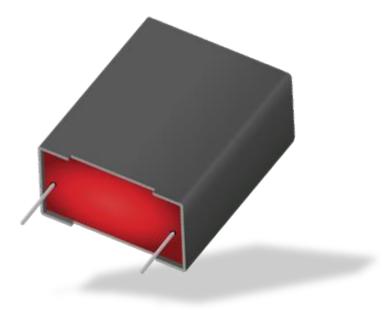
Stacked Film Capacitors (Common examples)

- Low inductance
- No noise
- Self healing
- High Thermal shock capability
- High Temperature Cycle capability

PPS (Polyphenylene sulfide)	PET (Polyethylene tetraphtalate)	PEN (Polyethylene Napthalate)
-55c to 125c	-55c to 125c	-55c to 125c
1206, 1210, 1812	1206 to 6054	1206 to 6054
1nf – 180 uf	10nf to >>>4.7 uf	1nf to 4.7uf
2% 5% 10%	5% 10%	5% 10%
16v to 50v	63v to 630v	25v to 630v

Assembly

- 1. Stamping/labeling
- 2. Special testing and screening :
 - Thermal cycle/shock
 - DC elevated temp burn-in
 - AC elevated temp burn-in
 - Power testing and thermal profiling
 - Specialized testing such as ramp testing, square wave, shock, vibration, humidity, pulsing/strobe
- 3. Testing to final print specifications
- 4. QC inspection to mechanical and point electrical requirements

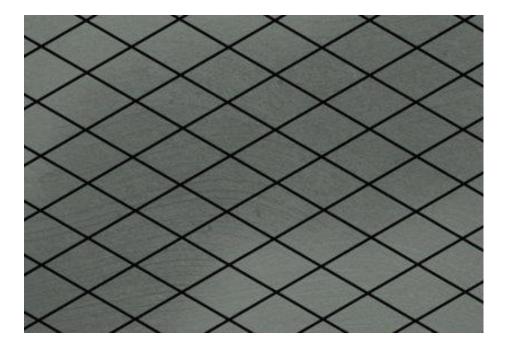


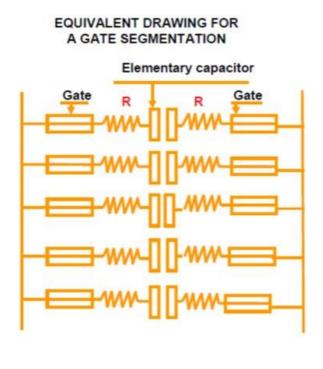
Testing

All capacitors are tested at least twice for standard parameters:

- Dielectric withstanding voltage (DWV)
- Capacitance
- Dissipation factor (DF)
- Equivalent Series Resistance (ESR)
- Insulation Resistance (IR)

Specific tests as specified by the customer




Metalized Film

Film is Metalized in a Specific Pattern to Create Small Fused Areas

Careful -

Manufacturers have different fusing methods – therefore different wear out rates

Metalized Film

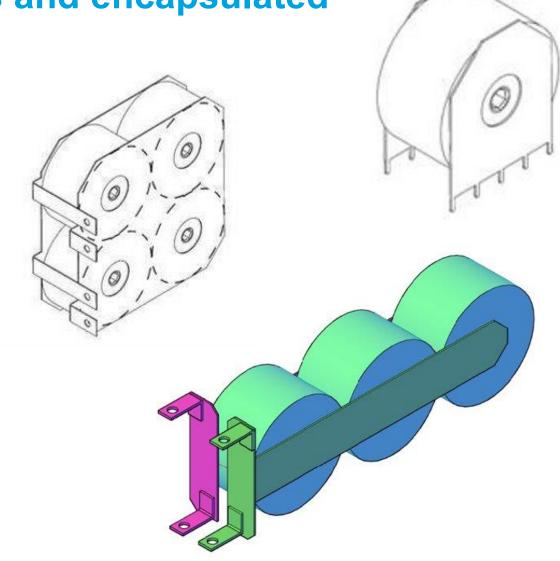
Metallized Film is Wound Into Pucks, Bobbins, and Dice-able SMT Chips

Basic Concept: development, qualification and production of standard elementary wound bobbins.

Flat Bobbin

- Film Width: ¹/₂" up to 6"
- Thickness: up to 1.6"
- Length: up to 7"

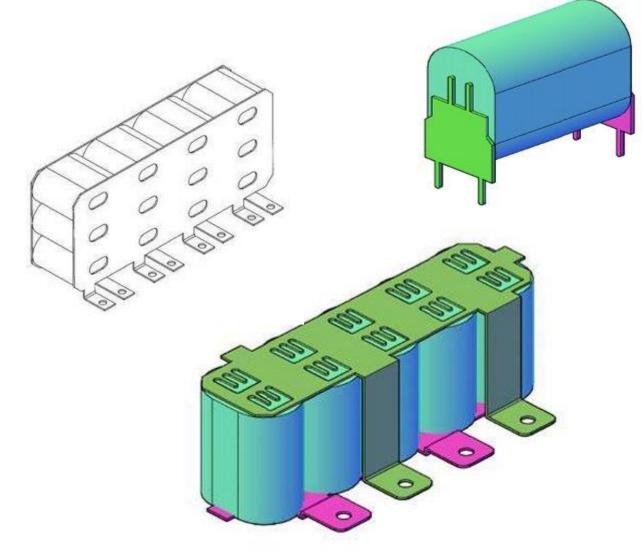
Cylindrical "Puck" Shape


- Film Width: 1/2" up to 6"
- External diameter up to 3.2"

Puck

Pucks are placed onto bus bars and encapsulated

Fundamental brick to create modules

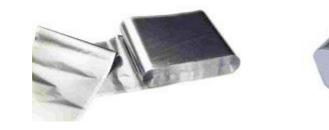


Bobbins

Bobbins are placed onto bus bars and encapsulated

Fundamental brick to create modules

Oil and Power Film Capacitors



No Free Oil

- Metallized film, segmented
- Cylindrical or flat and hard bobbins
- Resin filled case

- Metallized film with organic oil between layers, non-segmented
- Flat and soft bobbins
- Resin filled case

Oil Impregnated

11	M	
A	J. West	

- Metallized film, Rapeseed oil impregnated, non-segmented
- Flat and soft bobbins
- Oil filled case

Characteristics of Film SMD Capacitors

N.B.: SMD = Surface Mounted Device SMT = Surface Mounted Technology

		PET (MKT)	PEN (MKN)	PPS (MKI)	NPO	X7R	Tantalum
Temperature	Operating temperature (°C)	-55/125	-55/125	-55/140	-55/125	-55/125	-55/125
DC Bias	⊗C/Cwith temperature (%)	+/- 5	+/- 5	+/- 1.5	+/- 1	+/- 15	+/- 10
Time	DC voltage coefficient (%)	negl.	negl.	negl.	negl.	-20	negl.
Frequency	⊗C aging rate (%/h dec.)	negl.	negl.	negl.	negl.	2	n.a.
	Dissipation factor (%) 1 kHz 10 kHz 100 kHz	0.8 1.5 3.0	0.8 1.5 3.0	0.2 0.25 0.5	0.10 0.10 0.10	2.5	8
	ESR	low	low	very low	low	moderate to high	high
	IR (M· . μF) 25°C 85°C	10000 1000	10000 1000	10000 1000	10000 1000	1000 500	100 10
	Dielectric absorption (%)	0.5	1	0.05	0.6	2.5	n.a.
	Capacitance range from (pF) to (µF)	1000 10	1000 4.7	100 1	10 0.047	100 4.7	100000 1000
	Capacitance tolerance (+/- %)	5 10 20	5 10 20	2.5 5 10 20	5 10	10 20	10 20
	Self healing	yes	yes	yes	no	no	no
	Typical failure mode at end of life	open	open	open	short	short	short
	Reliability	high	high	high	high	moderate	low
	Piezoelectric effect	no	no	no	yes	yes	yes
	Resistance to thermal and Mechanical shock	high	high	high	moderate to low	moderate to low	high
	Non-linear distorsion (3 rd harmonic)	very low	very low	very low	low	high	n.a.
	Polarity	no	no	no	no	no	yes

Common Film Types:

Polypropylene (PP)

Polyphenylene Sulfide (PPS)

Polycarbonate (PC)

Polyethylene Naphthalate (PEN)

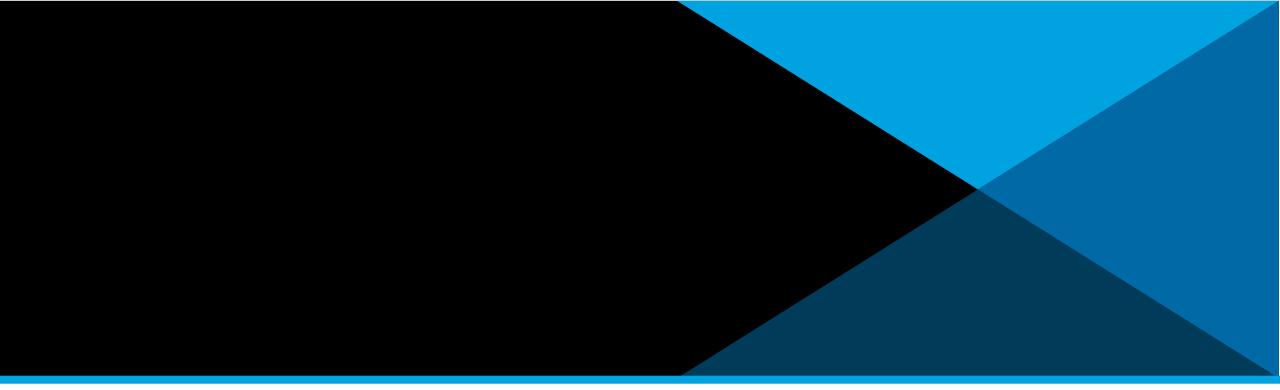
Teflon (PTFE)

Polyethylene terephthalate (PET)

Why use Film Capacitors?

Advantages of Film Dielectric

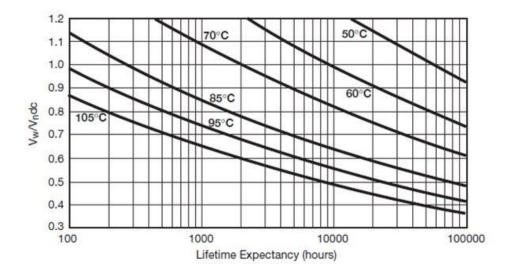
- Self Healing property, Open failure mode
- Low dissipation factor, ESR and ESL
- Excellent thermal shock resistance
- No piezoelectric effect
- Non polar construction
- No derating vs voltage or temperature (good stability)
- Good capacitance/volume ratio due to stacked construction
- Competitive vs. ceramic high voltage or high capacitance values



Electrolytic Alternate

	FILM	ELECTROLYTIC
SURGE VOLTAGE	2X RATED VOLTAGE	1.2 X RATED VOLTAGE
REVERSE VOLTAGE ALLOWED	YES	NO
RMS. CURRENT	UP TO 1ARMS PER μ F	0.025 ARMS PER µF
MTBF	10M HOURS	1M HOURS
LIFE TIME	>100,000H	40,000H
STORAGE	> 10 YEARS	1 YEAR MAX
ENVIRONMENTALLY FRIENDLY	YES	NO
END OF LIFE	SOFT – 15% CAP LOSS	EXPLOSION RISK

Film Capacitor Applications


		APPLICATIONS							
	FILM CAPACITOR		AUTOMOTIVE	CONSUMER	LIGHTING	MEDICAL	NEW ENERGY	POWER	TELECOM/ DATA
SMD CAPACITOR		PET Dielectric & PPS Dielectric: Good for Blocking/Coupling, Bypass, Decoupling, and Smoothing.	x	Х		Х		Х	х
FILM CAPACITOR		PET/PP – Metallized Film: Blocking/Coupling, Bypass/Decoupling, Film/Foil: Band-pass Filter, Band stop Frequencies, Timing, Peak Voltage Detectors.	×	×	×	x		x	x
EMI SUPPRESSION CAPACITOR		Metallized Paper: Dielectric-suppresses High-frequency Disturbances of Electrical Equipment on the Mains. Capacitor Voltage Dropper.		X	×	X	X	X	Х
PULSE DUTY CAPACITOR	5	PP Dielectric: High pulse duty. Smoothing, energy Storage, Oscillating Circuit, Snubbing (Relay).	x	х	X	Х		Х	x
GTO CAPACITOR	e	Energy Storage: stores the energy and releases in a short time. Snubbing (GTO Thyristor)-decreases over voltage peaks by high current switching.					Х	Х	
DC-LINK CAPACITOR		Energy Buffer: (converter) - Capacitor stores DC-voltage in an intermediate circuit. Non-Polar.	x				Х	Х	
SNUBBER CAPACITOR		Energy Storage: Capacitor is charged to a high voltage, stores the energy and releases it in a short time. Snubbing: (IGBT) low-self inductance.	Х	Х		Х	Х	Х	

Power Film Capacitor Lifetime Calculation

Calculations

LIFE TIME EXPECTANCY vs VOLTAGE & HOT SPOT TEMPERATURE

Hot spot temperature will be determined with the following expression:

$$\theta max_{hotspot} = \theta_{ambient} + l^2 rms x \left[rs + \frac{1}{C \times 2 \times \pi} tg \delta_0 \right] x Rth$$

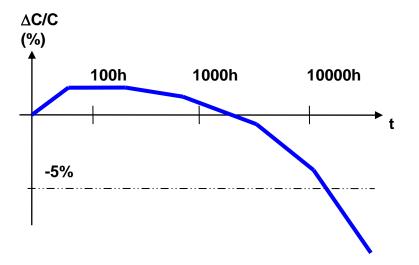
with: $\theta \max_{hotspot}$: the maximum hot spot temperature

 $tg\delta_0$: dielectric losses

Rth: Thermal resistance

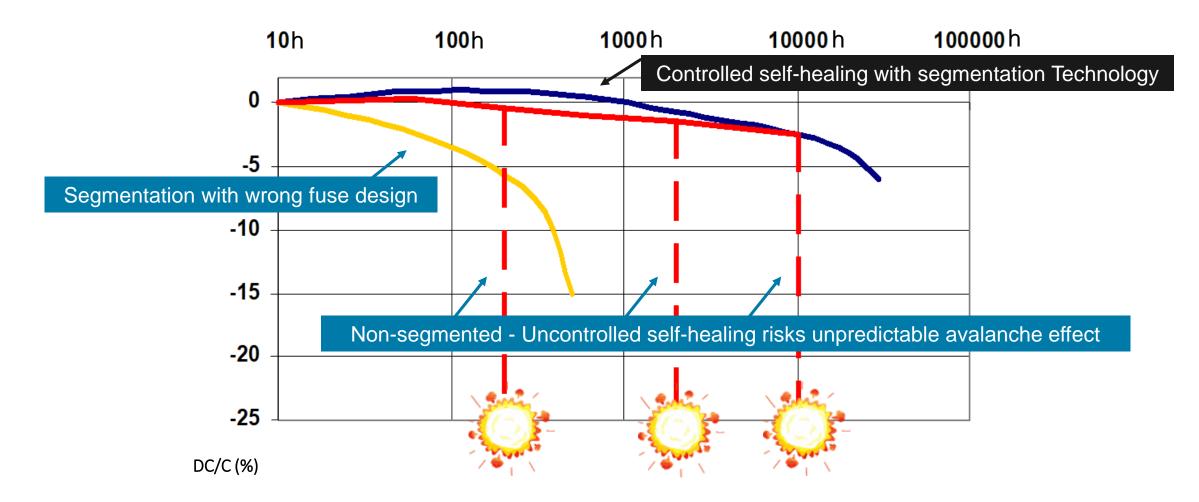
Rs: Serial resistance

θhot spot will be 85°C or 105°C function of the application and the technology.


Controlled Self-Healing

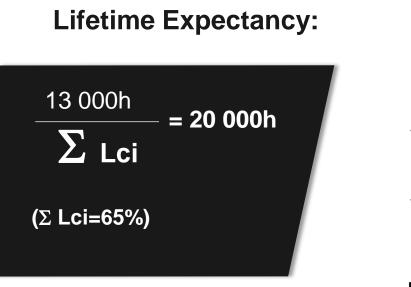
Medium Voltage Power Technology:

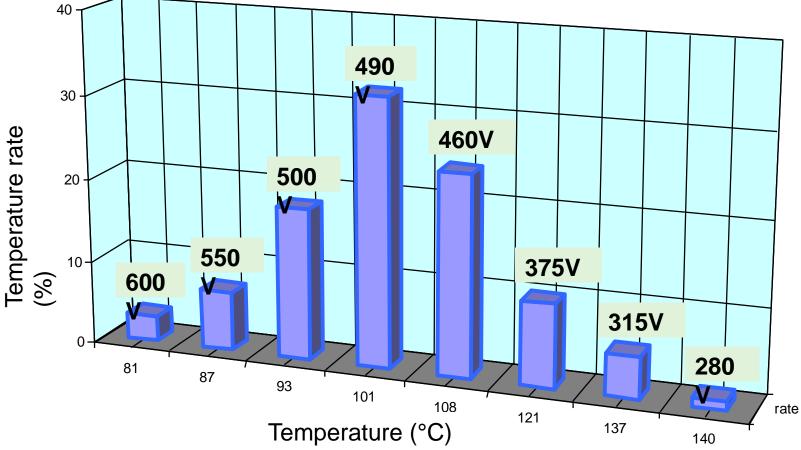
Basic concept of segmented metallized film:


- The total capacitance is divided into elementary cells protected by fuse gates (several million).
- In the event of a weak point, only that cell will be removed by fuse activation.
- Capacitance decreases as a function of cell element fuse activation.
- No catastrophic failure (short circuit) results, only a decrease in bulk capacitance.
- Aging level (Delta cap) is calculable.

Careful

Controlled Self-Healing performance varies by mfgr


Lifetime: Mission Profile

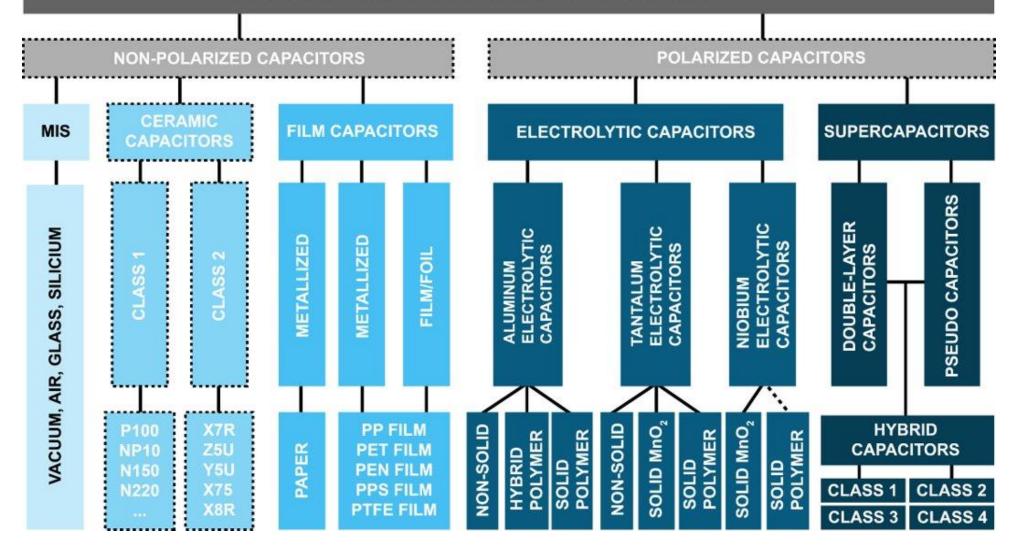

Mission profile Input data: I, ambient temp, voltage are given vs rate

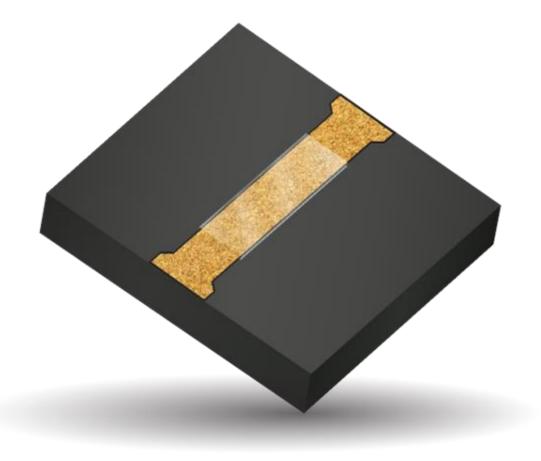
RATE	3%	7%	18%	32%	24%	10%	5%	1%
I (ARMS)	50	190	250	220	200	150	120	100
POWER (W)	5	8	12.5	9.7	8	4.5	3	2
AMB TEMP.	76	79	83	92	100	116	134	138
∆θ (°C)	5	8	10	9	8	5	3	2
HOT SPOT (°C)	81	87	93	101	108	121	137	140
VOLTAGE (V)	600	550	500	490	460	375	315	280

For each rate, lifetime consumption is calculated vs voltage and Hot Spot temperature

Lifetime: Mission Profile

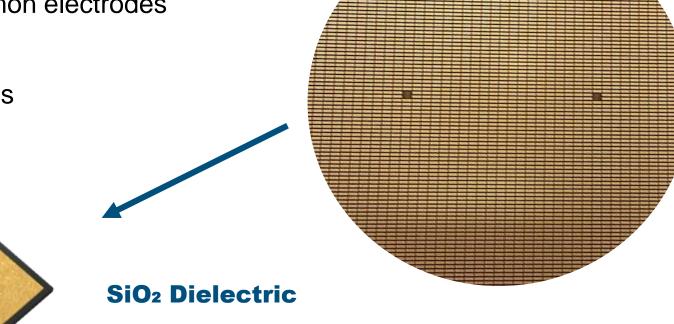
LIFETIME CON SUMPTION (LC)	2%	2%	6%	9%	8%	3%	32%	3%	
----------------------------------	----	----	----	----	----	----	-----	----	--


Design vs. Mission Profile


What correct design & use yields

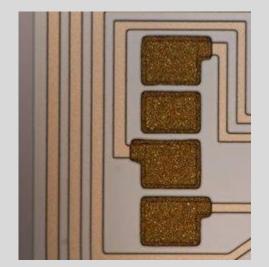
Number of parts in use:	3.01x 10 ⁶
Study period:	1979 - 2019
Number of different designs:	450
Voltage Range:	75v To 4.6kv
Estimation of Working Time:	66.3 Billion Hours
Catastrophic Failure:	ZERO

Recap

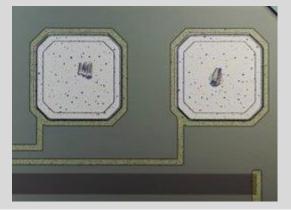


Thin Film Capacitors

Electrostatic Capacitors

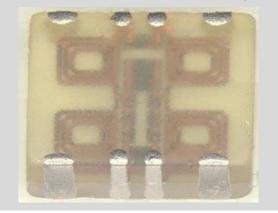

Thin Film Capacitor

- Fixed Value
- Thin Film SiO₂ Common dielectric
- Gold, Aluminum are common electrodes
- Single or multiple layer
- Various termination options

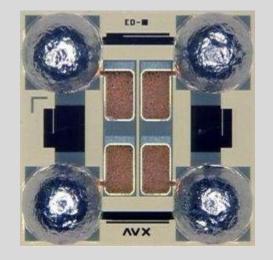


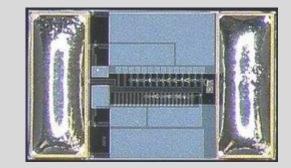
Thin Film Capacitor Types & Terminations

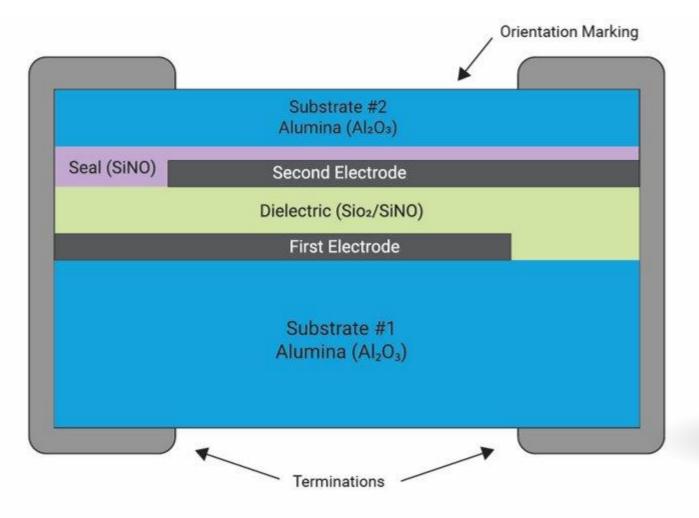
Au Wire-bond

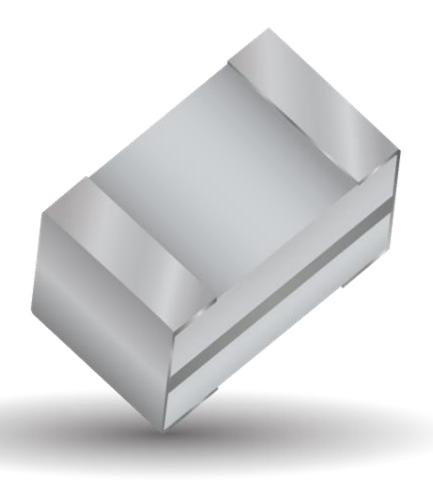


Al Wire-bond



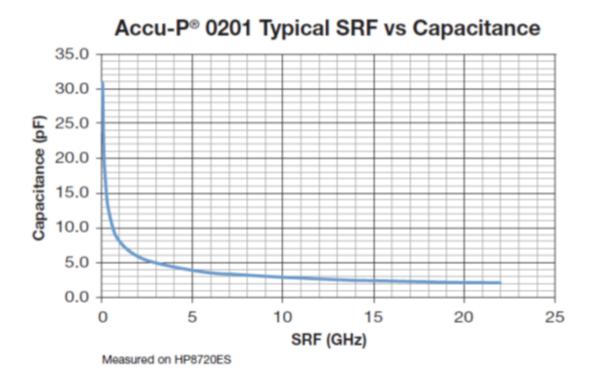

Surface Mount Array


Ball Grid Array



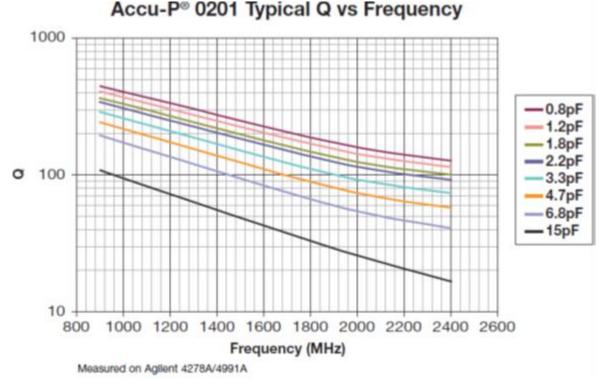
Land Grid Array

Final Product



Thin Film Capacitor

Exceptional capacitance tolerance, matching & stability


Time: Negligible Aging

Temperature: 0±30ppm/°C, 0±60ppm/°C

Voltage: Negligible DC bias effects

Frequency: exceptionally high Q and stable

Thin Film

Application

- RF & High Frequency, High precision
- Value Range Sub Pf to < 100pf
- Voltage range </=200v
- Tolerances as tight as 10 fF / 0.01pf
- **Dielectric Absorption** </= 0.01%

Capacitor	Thermal Exchange in Degrees Celsius per Watt	Power Rating @ 20°C Rise above an ambient of 25°C
Thin Film Alumina Substrate 1210	59° C/Watt	.34 Watts
Thin Film Alumina Substrate 0805	83.3° C/Watt	.24 Watts
Thin Film Alumina Substrate 0603	106° C/Watt	.186 Watts
Thin Film Alumina Substrate 0402	158° C/Watt	.127 Watts
Procelain 0505	126° C/Watt	.158 Watts
Procelain 1111	67.7° C/Watt	.295 Watts
Ceramic 1210	70.9° C/Watt	.282 Watts
Ceramic 0805	113° C/Watt	.177 Watts
Ceramic 0603	145° C/Watt	.139 Watts
Ceramic 0402	219° C/Watt	.091 Watts

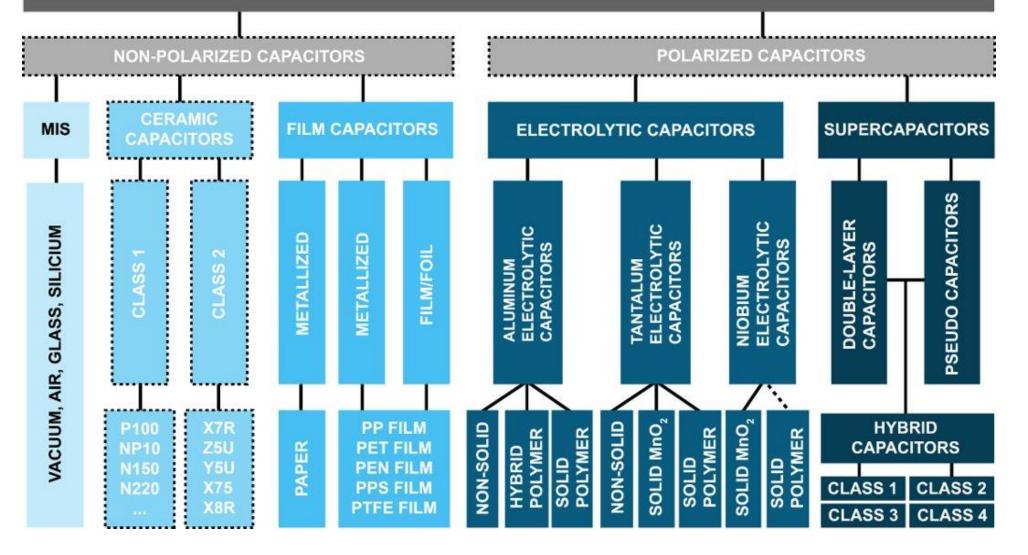
Thin Film Capacitor Reliability

Product : Thin Film 0402 Capacitor Reliability example (snap shot in time)

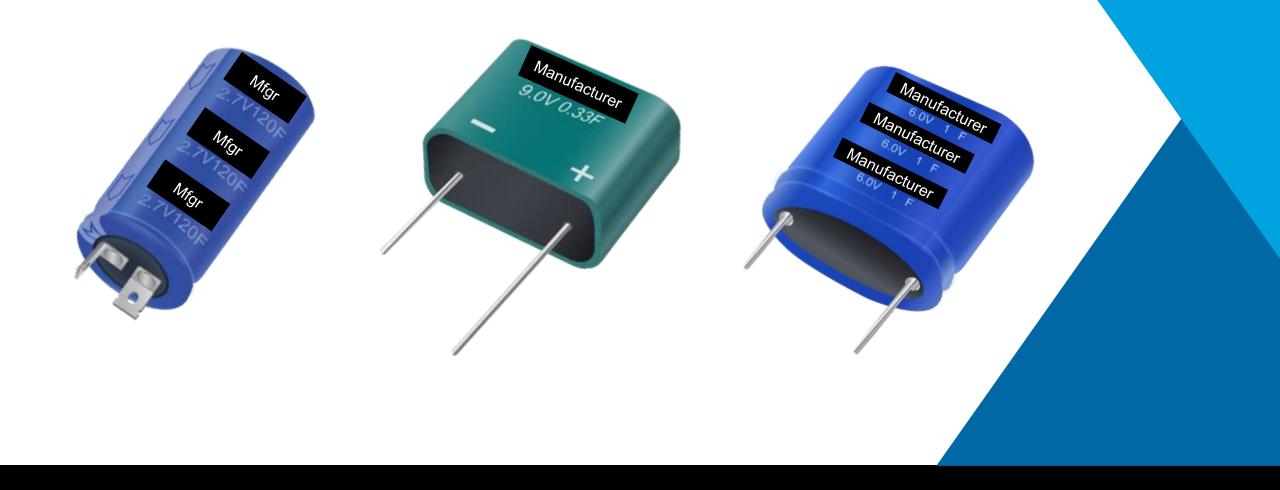
Test Conditions: 2xRated Voltage, 125°C, 1000 hours

PRODUCT	LOTS TESTED	PIECES TESTED	DEVICE HOURS	EQUIVALENT DEVICE HRS	FAILURE RATE (λ%)	FAILURE RATE (FIT)	MTBF HOURS
0402 Accu-P	2272	45440	4.54E+07	2.91E+12	2.60x10 ⁻⁶	2.60x10 ⁻²	3.85x10 ¹⁰

Typical User Conditions: 0.5xRV, 50°C

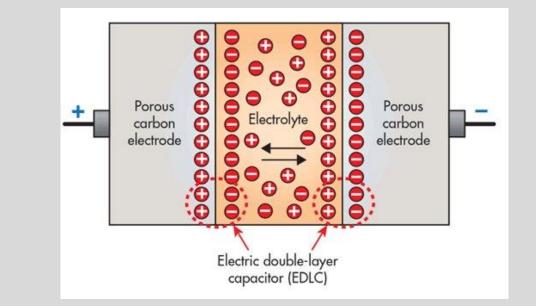

NOTES:

1. FAILURE RATE (λ %) IS CALCULATED IN PERCENT PER 1000 HOURS AT 95% CONFIDENCE LEVEL

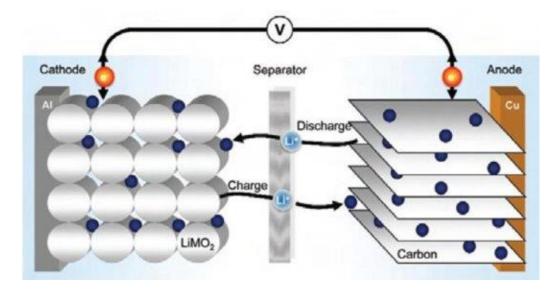

2. 1 FIT = 1 FAILURE IN 10⁹ HOURS AT 95% CONFIDENCE LEVEL

Recap


SuperCapacitors

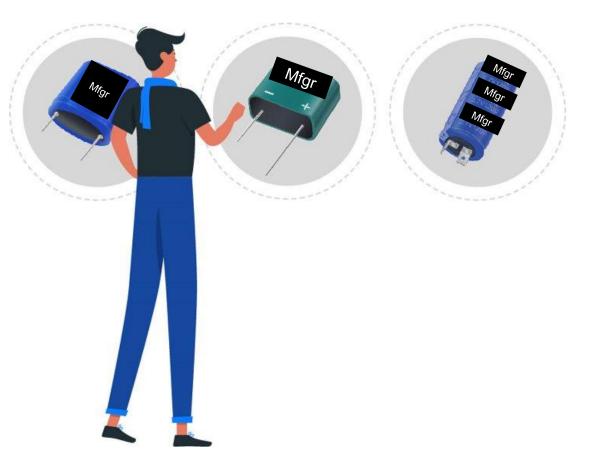

SuperCapacitors

Electrochemical Double Layer Capacitor


- High Capacitance / Low Voltage Cap
- Bridges electrolytic and rechargeable battery spectrum
- ~100x more energy per unit mass/volume of AI Electrolytic
- Fast Charge/Discharge
- Can make into modules

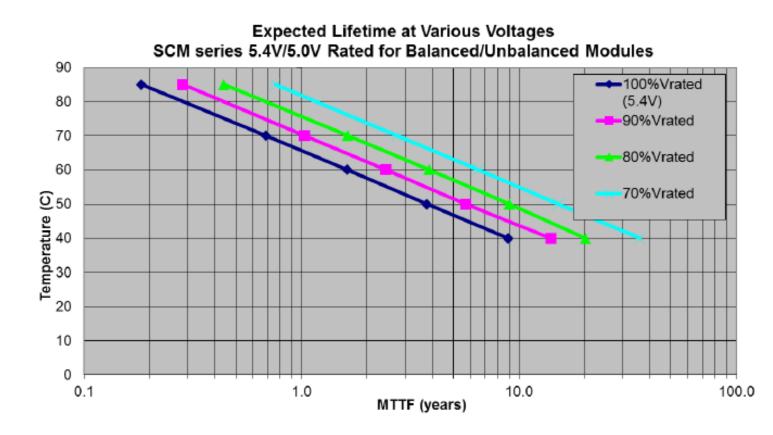
SuperCaps vs. Battery

Characteristic Comparisons						
Characteristic	SuperCap	Li-ion Battery				
Charge Time	1 - 10 secs	10 - 60 mins				
Cycle Life	1 million	500+				
Cell Voltage	2.1V - 3.3V	3.6V - 4.2V				
Specific Energy	5	100 - 200				
Specific Power	~10,000	1,000 - 3,000				
Cost per Wh	> \$10	\$0.50 - \$1				
Service Life in Automobile	10+ years	5 - 10 years				
Charge Temperature	-55°C to +90°C	0°C to +45°C				
Discharge Temperature	-55°C to +90°C	-20°C to +60°C				

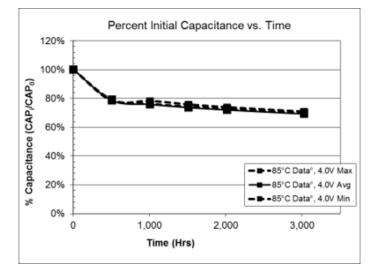


Direct Comparisons				
SuperCaps				
Pros	Cons			
Long life cycle	Low specific energy			
High load currents	Linear discharge voltage			
Fast charging times	Slightly higher self-discharge			
Good temperature performance	High cost per Wh			
Batteries				
Pros	Cons			
Power density	Limited life cycle			
Storage capability	Voltage and current limitations			
Better leakage current	Long charging times			
Constant voltage	Very temperature sensitive			

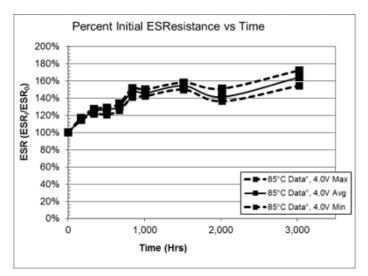
Selecting Which SuperCap Technology

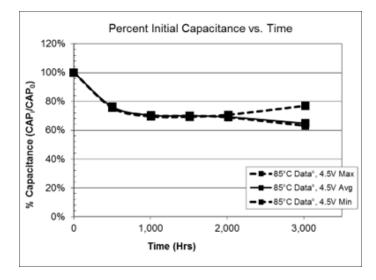

Key Things to Know Before Selection:

- Identifying the operating temperature range is most critical
- Understanding the application of either Energy Harvesting, Pulse Power, Power Hold-Up, or Battery Replacement
- Importance of Equivalent Series Resistance (ESR) and Leakage Current (LC) on the design
- Operating voltage of the application
- Expected lifetime

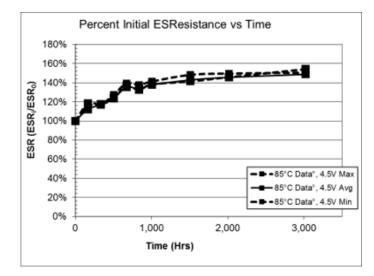


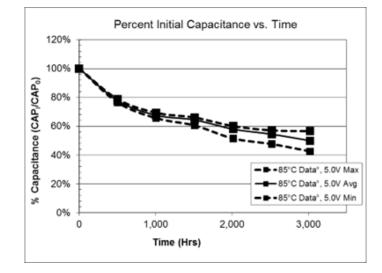
Understanding Life-Time

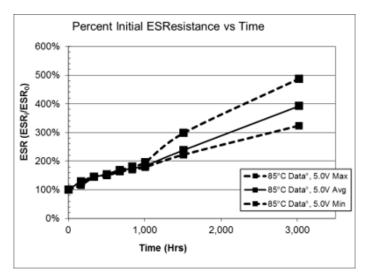

- Life-time is a function of voltage and temperature
- From internal testing and "rule of thumb," we know that life-time doubles for every 10°C lower operating temperature, and again doubles for every 0.1V lower operating voltage.



Life-Time Test Data

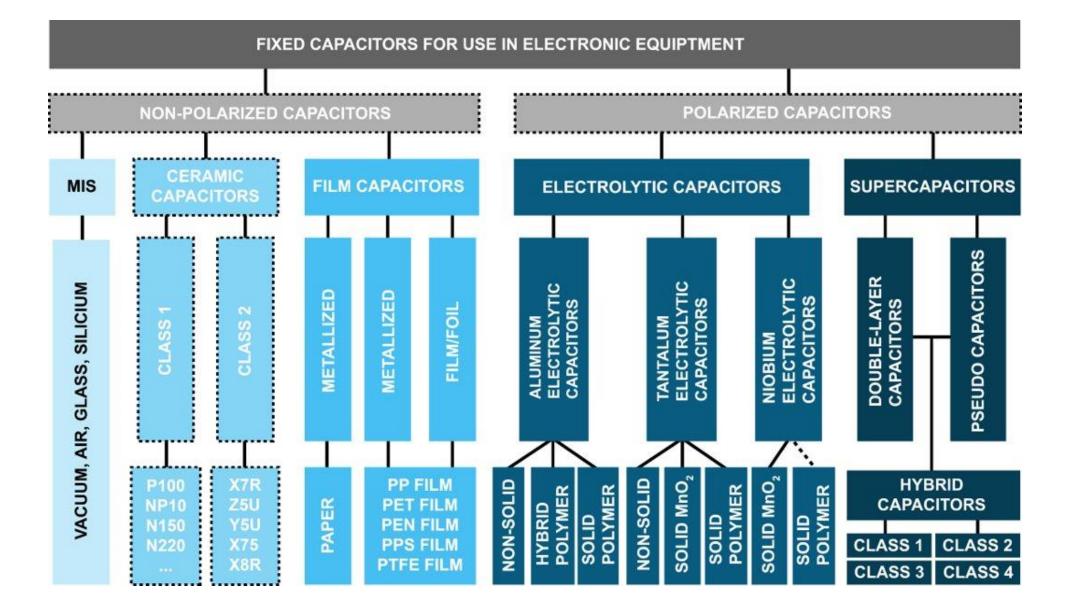



4.0V SCM at 85°C



4.5V SCM at 85°C

5.0V SCM at 85°C


Custom SuperCap Modules

Modules of 48V 165F & 16V 500F are common today due to active balancing IC chipsets for series parallel capacitor connection. Larger modules easily possible.

Summary

