

THE NEW VALUE FRONTIER

High Performance Packaging for Space

Arne Knudsen Kyocera International, Inc. April 2017

Space Modules and Comm Subsystems KyDCERa

RF modules: KAI's road map

Benefits of Ceramic Packages

 Unique characteristics of Multilayer and Post-Fired Ceramic technologies can provide a wide variety of solutions.

Shroud

Transition

Excellent Design Flexibility
High Density Design rule
3D Structure, Embedded Passives
Single to Very High Layer Count

- Many Material Options
- Reliable High Temp Brazing

There are two options for low loss module Standard KAI multilayer ceramics Kuller design: GL331 and AO630

ITCC (High Temp Cofired Ceramic) Pt: 92% Alumina with Pt conductors

MTCC (Medium Temp Cofired Ceramic) AO630: Alumina with CuW Conductors

LTCC (Low Temp Cofired Ceramic) GL331: Filled Glass Ceramic

Materials		HTCC			LTCC		Develop	omental
Characteristics	A440	A473	AN242	Dupont 951	Ferro A6M	GL331	Pt	AO630
Young's Modulus (GPa)	310	270	320	152	92	155	275	275
Flexural Strength (MPa)	400	400	400	320	210	400	440	460
TCE (RT - 400°C, ppm)	7.1	6.9	4.7	5.8	7.0	7.3	6.9	7.0
Thermal Conductivity (W/mK)	14.0	18.0	150	3.0	2.0	3	17	16
Dielectric Const (1Mhz)	9.8	9.1	8.7	7.8	5.9	7.5	9.0	9.3
(3Ghz)	9.6	8.5	8.7	7.8	5.9	7.7		9.1
(60Ghz)		8.6	-			7.5		9
Dielectric Loss (1Mhz)	24 x 10 ⁻⁴	5 x 10 ⁻⁴	1 x 10 ⁻⁴	10 x 10 ⁻⁴	12 x 10 ⁻⁴	4x 10 ⁻⁴	6 x 10 ⁻⁴	5x 10 ⁻⁴
(3Ghz)	15 x 10 ⁻⁴	10 x 10 ⁻⁴	170 x 10 ⁻⁴	60 x 10 ⁻⁴	12 x 10 ⁻⁴	10x 10 ⁻⁴		23x 10 ⁻⁴
(60Ghz)		21 x 10 ⁻⁴	-		12 x 10 ⁻⁴	16x 10-⁴		21x 10 ⁻⁴
Conductor/Resistance (mΩ/sq)	W / 8-10	W / 8-10	W / 8-10	Au, Ag / 2-4	Au, Ag / 2-4	Cu/3	Pt /~10-15	CuW/Mo/~4
Brazing Materials	Ag/Cu	Ag/Cu	Ag/Cu	Au/Sn	Au/Sn	Au/Sn	Au	AgCu

Attributes of GL331

KII Proprietary & Confidential

GL331 Dielectric Constant: Uniformity between and within lots

Lot No.	Tape manufacturing date	Fired layer thickness (mil)	Density (g/cm³)	Dielectric Constant @12.5GHz* (std. dev.)	Dissipation Factor (x10 ⁻⁴)
1	2012	7.57	3.194	7.36 (.03)	22
2	2013	7.82	3.200	7.33 (.04)	22
3	2013	7.73	3.199	7.37 (.02)	23
4	2015	7.52		7.34 (.03)	
Result (±mean)		± 2%	± 0.1%	± 0.3%	± 2%

• Modules:

 Structural integrity 	High strength (400MPa) Chemical Stability
 Metals / Connectors 	AuSn brazing of RF connectors Hermetic attachment of matched metals (HS,SR)
 Interconnect 	Wire bonding (15g wire pull (1mil Au)) BGA (2kg ball shear)

• Filters:

— Er	Stable over frequency, material / firing lots Low dielectric and conductor losses
- Vias	Uniform diameter, minimal nail-heading Fine pitch, slots possible
 Layer alignment 	Optical alignment (~0.002" possible)
- Thickness/Shrinkage	Consistent lot-to-lot

Layer-to-layer alignment : Critical for filters

- Optical alignment during lamination results in significant improvement
- But, it typically requires:
 - Printed features
 - Tooling modification
 - New group lamination "strategy"

Capable of < 3mil layer-to layer alignment

Comparative Pricing – GL331 is much cheaper than other LTCC materials

Advanced LTCC Module (example)

- 1.5 x 3.5"
- 18 layers
- Ring frame and baseplate
- Edge mounted connectors

Cost comparisons – Candidate Ku-band module KyDCERa

Details: Compare the costs of a package that has been manufactured in volume in **both** LTCC and HTCC. This exercise illustrates the inherent cost differences between the two technologies.

1.5 x 0.9 x 0.180" **Comparative Package**: 6 GPPO connectors FeNiCo seal ring CuMo/CMC Heat sink Similar to. **Assumptions**: – Au at \$1100/toz - 75% yield 17 Layer count 23 **Heat Sink** CuMoCu CuMo Metallization Cofired Au Cofired W, Ni/Au plate Brazing AuSn CuAg

Cost Details (100k qty)

RF modules: KAI's road map

High performance heat sinks

Commercial and defense-based products

KII Proprietary a com

Active cooling – May be required in extreme cases

- Fluid delivery design
- Convection models

- Machined ceramic
- Unique designs for unique challenges

RF modules: KAI's road map

Connectorized RF Pkgs

Sat-Com Packages

X-Band Satellite Module

40G Mux/Demux

Radar T/R Module

KAI-invented modifications to improve perfomance

RF modules: KAI's road map

FC Assembly Process: QML_V

Current Status – Space FC

High Level Process Flow

#	Description	Process Development
1	Passive Attach	Completed
2	Die Attach	Completed
3	Cleaning	Completed
4	Underfill	Completed
5	TIM Process	Completed
6	Lid Sealing	Completed
7	Marking	Completed

Customers

Package	QML	Customer		
Non-Hermetic	Class Y	Customer A		
Non-Hermetic	Class Y	Customer B		
Non-Hermetic	Class-Y	Customer C*		
Hermetic	Class-Q	Customer D		
Hermetic	Class-V future	Customer D		
*Partial Assembly				

Statement

Kyocera has provided all data required to satisfy the modified Method 5011 and to support customers' PIDTP. Waiting acceptance by customers and DLA.

Kyocera America, Inc. Proprietary & Confidential

Sintered silver die attach (KCC)

Semiconductor

Highest thermal resistance may be found in the attachment interface between the Metal bonding by Sintering semiconductor and heat sink Heat Sink / Die Attach Thermal Resistance 9 R Heat sink Cu - 400 CMC - 235 Cu/W - 170 Agepoxy - 2.5 Ag epoxy+ -Au/Sn - 57 Ag nano - 120

RF modules: KAI's road map

🔇 КУОСЕРА

Advanced Packaging Materials

KII Proprietary & Confidential

- Kyocera responsible for design, manufacturing, assembly
- Interface with customer and their customer
- Modules are in space

Original SOW: Governing document defining:

- 1. Requirements: Electrical, Thermal, Mechanical
- 2. Package Layout Proposal
- 3. Reliability Requirements / Estimation
- 4. Thermal Studies
- 5. Electrical Simulation / Design
- 6. Package Production
- 7. Assembly
- 8. Testing / Inspection / Shipping
- 9. Design validation

Original SOW: Governing document defining:

1. Requirements: Electrical, Thermal, Mechanical

- 2. Package Layout Proposal
- Hermeticity $< 10^{-8}$
- Dimensional x, y, height tightly spec'd
- Thermal dissipation theta jc
- Moisture content (underfill, paste) <1500ppm
- Low inductance
- Signal integrity–dl/dt, decap placement/identity
- RF RL, isolation

1. Requirements: Electrical, Thermal, Mechanical

2. Package Layout Proposal

3. Reliability Requirements / Estimation

- Brazed leads
- Cup-shaped lid with AuSn seal
- Flip Chip MCM with ~20 passives
- Challenging volume, thermal, electrical requirements

- 2. Package Layout Proposal
- 3. Reliability Requirements / Estimation
- 4. Thermal Studies

Consideration of:

- 1st level (die-substrate)
- 2nd level (substrate-PWB)
- Lid Seal
- Shock / Vibration / Thermal Cycling
- FIT estimation

Reliability – testing and modeling KHOCERA

Reliability evaluation employing test vehicle...

- Test Package: 29mm sq x 2mm thickness
- Die: Si 15mm sq
- Bump metallization: 95/5 Pb/Sn

Man	Tomp. Degrassi C	CPD	Cycles to First full	Die Carrier	Mean Life
13	0 to 100	n	6,208	50mm white rememic	200
.0	010100	12	11,000	Norm white cenamic	258
ы	0 to 100	72	+2.500 <08,600	Steen dark omanic	- 20
18.2	-65 to 156	544	>580 <1900	X2mm white conumic	18.4
19.2	-55 to 123	27	>500	12mm white	18.4

Table 1. Encapsulated Pip Cop Reliability Performance: mean No numbers are committed to a common constant. (Deta published by 30M Microsoftwarter (7) [7] H.Quinones, "3"^d International Conference on Flip-Chip Technology, C4

Encapsulation Fatigue," Center for Management Technology, April 1997.

	Lid Seal Reliability:
1. Substrate :	Alumina multilayer package
2. Substrate OD :	27 mm SQ (1.1mm thickness)
3. Die size :	10 mm SQ
4. Bump :	Eutectic bump
5. Underfill :	KAI standard
6. Seal :	AuSn with Seam Seal method
7. Lid:	Kovar dome lid (22mm OD, 0.25mm thick)
8. TCT :	MIL-STD 883, Method 1010 Condition C, 50 cycles
9. Hermeticity :	MIL-STD 883, Method 1014, Fine & Gross leak test
-	

KII Proprietary & Confidential

- 3. Reliability Requirements / Estimation
- 4. Thermal Studies
- 5. Electrical Simulation / Design

- Characterize thermal dissipation design and materials.
- Identify/characterize outgassing of thermal paste / underfill Focus: Thermal conductivity and Moisture (<5,000 ppm)

Underfill and TIM

boundary of the submodel which represents a cut through the global model. Displacements calculated on the cut boundary of the coarse model are specified as boundary conditions for the submodel. Submodeling is based on St. Venant's principle. This implies that stress concentration effects are localized around the concentration; therefore, if the boundaries of the submodel are far enough away from the stress concentration, reasonably accurate results can be calculated in the submodel.

Al#11 – Thermal Paste

RELIABILITY DATA

Reliability experiments were performed using AI-Si sandwiches prepared with 10 psi of assembly pressure and cured for 2 hours at 150C. Thermal diffusivity measurements, made using a laser flash diffusivity instrument (Netzsch Instruments Microflash 300) were used to calculate thermal resistance.

iter 1000 (AATS) Cycles 45-Mr Thermal Stock) 55 to 125°C, 20mins cycles)	Thermal Resistance, delta	-2.5%	
Femperature/Humidity Aging			These data show the stability of th
After 250 Hours Conditioning 85°C / 85%RH)	Thermal Resistance, delta	-5.2%	paste thermal resistance and, thus
Moisture Sensitivity Level (MSL)			and exposure to humidity
After 168 Hours at 85°C / 85%RH	Thermal Resistance, delta	-0.28%	
Level 1 – 85C / 85%RH + 3 Post C	ondition Reflow Cycles (26	OC Peak / Lead-Fre	e Profile)
Adhesion Strength-Reliability*			
After 500 AATC Cycles	Die Shear Adhesion, delta	+21%	There is an actual increase in adhesion over time. This is likely not inherent to thermal shock

4. Thermal Studies

5. Electrical Simulation / Design

6. Package Production

- 1. RF signal differential pair design – MWS, HFSS
- 2. di/dt analysis Speed2000
- 3. x-talk analysis Speed2000
- 4. isolation analysis Speed2000
- 5. Rdc analysis
- 6. S-parameters Speed2000
- 7. Impedance Measurement Validation

RITY SpeedXP Suite

chip Auf, anizzate Al-wave electronic analysis of the advacate and PCRs, using potential technologies, the learnoist desmaignetic-bits some anounces for exceedable, tegral relation put power and private software for the advactance. Etherhit makes, an event calculate, basedide , the calculate term and

out power and opear integrity, evaluating theoughing capacities and and contracting highs assurate UFET2 models from making

Simulation and Design

THE NEW VALUE FRONTIER

Power Analysis – Typical Requirements

Zin for each power net

- □ Pwr/Gnd impedance vs. location study
- □ Impact of decoupling capacitors
 - First question: Can using board decoupling scheme work as drop-in for ceramic package?
 - Strategy:Place large value capacitors outside MCM, place smaller value capacitors close to device
 - Next question: How much decoupling is being provided by capacitors on Layer 8?
- □ What must we do to meet device power delivery requirements?
 - Reselect decoupling capacitors based on package parasitics
 - Reposition decoupling capacitors based on full layout specifics

Package Production / Design Validation

		• •		55	/Γ	la	tnes	SS	
hickness hickness[mm 2.954	[hickness[in] 0.1163	S/N 1 2 3 4	FLATNESS 0.0011 0.0013 0.0016 0.0013	S/N 26 27 28 29	FLATNESS 0.0017 0.0010 0.0019 0.0011	S/N 51 52 53 54	FLATNESS 0.0016 0.0020 0.0007 0.0015	S/N 76 77 78 79	FLATNESS 0.0015 0.0013 0.0012 0.0012
2.929 2.94 0.008 7.83	0. 115 3 0.1157 0.0003	5 6 7 8 9 10 11 12	0.0009 0.0007 0.0018 0.0015 0.0024 0.0020 0.0010 0.0010	30 31 32 33 34 35 36 37	0.0016 0.0015 0.0017 0.0018 0.0010 0.0013 0.0016 0.0014	55 56 57 58 59 60 61 62	0.0026 0.0008 0.0009 0.0020 0.0020 0.0018 0.0018 0.0016 0.0014	80 81 82 83 84 85 86 87	0.0013 0.0016 0.0018 0.0012 0.0027 0.0007 0.0006 0.0015
2.937 2.954 2.949 2.931	0.1156 0.1163 0.1161 0.1154	13 14 15 16 17 18 19 20	0.0022 0.0015 0.0009 0.0012 0.0016 0.0009 0.0006 0.0006 0.0011	38 39 40 41 42 43 44 45	0.0014 0.0014 0.0016 0.0019 0.0013 0.0018 0.0009 0.0018	63 64 65 67 68 69 70	0.0008 0.0016 0.0008 0.0010 0.0011 0.0018 0.0010 0.0011	88 89 90 91 92 93 94 95	0.0010 0.0020 0.0013 0.0007 0.0011 0.0011 0.0016 0.0023
2.948 2.938 2.938 2.945	0.1161 0.1157 0.1157 0.1159	21 22 23 24 25	0.0013 0.0005 0.0018 0.0016 0.0012 0.0014 0.005	46 47 48 49 50	0.0012 0.0022 0.0013 0.0022 0.0014	71 72 73 74 75	0.0015 0.0026 0.0008 0.0007 0.0016	96 97 98 99 100	0.0008 0.0023 0.0012 0.0018 0.0011
2.929 2.933	0.1153 0.1155				MIN 0.00 MAY 0.00 RANGE 0.00 ANG 0.00 3STLEV 0.00	005 027 021 014 014			
	hickness ickness[mm] 2.954 2.929 2.94 0.008 7.83 2.937 2.954 2.945 2.945 2.945 2.938 2.938 2.938 2.938 2.938 2.933	hickness ickness[mm]Thickness[in] 2.954 2.959 0.1163 2.929 0.1157 0.008 0.0003 7.83 2.937 0.1156 2.954 0.1163 2.939 0.1164 2.938 0.1164 2.938 0.1157 0.157 0.158 0.157 0.159 0.159 0.1159 0.1155 0.1155 0.1155 0.1155 0.1155 0.1155 0.1155 0.1155 0.1155 0.1157 0.1157 0.1157 0.0003 0.1157 0.1156 0.1157 0.1157 0.1157 0.1157 0.1157 0.1156 0.1157 0.1159 0.1159 0.1155	hickness ickness[mm]Thickness[in] 2.954 2.929 0.4163 2.929 0.4163 0.0008 0.0003 7.83 0.0003 7.83 0.0003 0.1157 0.0003 0.1156 2.937 0.1156 12 0.0003 0.1157 2.934 0.1163 12 0.0003 7.83 0.1156 2.954 0.1163 12 0.0003 7.83 0.1156 2.954 0.1163 12 0.0003 7.83 0.1157 2.954 0.1163 12 12 12 12 12 12 12 12 12 12	Sickness Sin Flathess 10ckness[in] 0.0011 2.954 0.1163 2.929 0.4453 0.0008 0.0003 7.83 0.0011 2.937 0.1157 2.954 0.1163 2.937 0.1156 2.938 0.1163 2.9393 0.1161 2.934 0.01163 2.954 0.1163 2.954 0.1163 2.938 0.1161 2.938 0.1157 2.938 0.1157 2.938 0.1157 2.933 0.1153 2.933 0.1153	Sickness Sin FLATNESS Sin 10ckness[in] 0.001 26 20011 26 2.954 0.1163 0.0015 29 4 0.0015 29 2.929 0.4153 0.0003 7 0.0015 20	Nickness SN FLATNESS SN FLATNESS 2.954 0.1163 0.0011 2 0.0013 2 0.0017 2.929 0.4153 0.0018 2.9001 2 0.0017 2.929 0.4153 0.0019 2 0.0017 2 0.0017 2.929 0.4153 0.0003 7 0.0019 2 0.0017 0.0008 0.0003 7 0.0018 2 0.0017 0.0013 0.0015 7.0008 0.0003 7 0.0018 2 0.0017 0.0013 0.0015 2.937 0.1156 0.0003 3 0.0016 0.0016 0.0016 2.9349 0.1161 15 0.0016 4 0.0016 0.0016 2.9338 0.1157 2 0.0013 4 0.0015 0.0015 2.9333 0.1157 0.0014 0.0014 0.0014 0.0014 0.0015 2.9333 0.1155 0.0014 0.00	hickness inckness[im] Flatness SN Flatness SN 2.954 0.1163 0.0013 22 0.0015 26 0.011 26 0.011 26 0.011 26 0.011 26 0.011 26 0.011 26 0.011 27 0.0015 26 0.011 26	Sickness Sin Flatness Sin Flatness Sin Flatness Sin Flatness 2.954 0.1163 2 0.0011 26 0.0071 51 0.0074 2.959 0.4163 0.008 0.0003 2 0.0011 26 0.0071 51 0.0074 2.930 0.4163 0.0003 0.0015 20 0.0011 24 0.0017 51 0.0074 2.937 0.01157 0.0003 7 33 0.0164 26 0.0017 51 0.0024 2.9337 0.11561 0.0016 33 0.0014 24 0.0114 24 0.0114 24 0.0116 2.9349 0.1161 10 0.0016 34 0.0114 24 0.0114 24 0.0116 20 0.0116 24 0.0116 24 0.0116 24 0.0116 24 0.0116 24 0.0116 24 0.0116 24 0.0116 24 0.0116 24 0.0116 <	Sickness Sin FLATNESS Sin FLATNESS Sin FLATNESS Sin 2.954 0.1163 0.001 26 0.001 51 0.006 77 2.959 0.4153 0.006 20 0.001 54 0.001 77 2.954 0.1157 0.0003 0.0011 26 0.0017 59 0.008 81 7.833 0.01156 0.0001 32 0.0011 56 0.0008 85 2.954 0.1163 0.0016 32 0.0017 59 0.0008 85 7.833 0.1156 0.0002 31 0.0016 86 80 0.0018 85 2.954 0.1163 0.0002 30 0.0014 62 0.0014 62 0.0014 65 0.0016 65 2.9354 0.1163 0.016 64 0.0016 65 0.0016 65 2.9338 0.1157 0.016 64 0.0016

MCM Cross Section

6. Package Production

7. Assembly

8. Testing / Inspection / Shipping

Process	Conditions	Quality Monitor/Data
Characterize substrates	Measure Flatness	Serialize package
Components Attach, 6 Resistors, 2 Caps) Reflow	Manual Print, place Solder paste	Visual Inspection Reflow Profile
Die placement (2) LICA placement (26) Reflow	ESEC Micron 2 Belt Furnace	Flux Height , Die pull Edge bump inspection Reflow Profile
Jnderfill Cure	Asymtek Dispenser Oven	Underfill weight, Visual Inspection Profile
Fhermal Mtl, lid attach Cure	Asymtek Dispenser Oven	Paste weight Profile
3eam Seal Outsourced)	AuSn Reflow N ₂ w/ tracer He	Program/Profile Visual Inspection Leak Check
Marking, Serialization Cure	Printex Pad marking Oven	Visual Inspection Temp. Profile
Fine Leak Test Bross Leak Test	He Bomb, Fine leak Test FLU Bomb, Gross Leak Test	Per MIL STD 883 1014
Stand-off Attach Cure	Manual epoxy disp, Place in an oven	Visual inspect Temp Profile
Final Inspect, QA,	1X	Visual inspect

KYOCERa

Qualification

- Development & Qualification Plan (AP5011)
 - Phase 1. Underfill materials
 - Phase 2. Thermal interface/Lid seal evaluation
 - Phase 3. Material set qualification

Example of Qualification test

Test	Cond	Sample Siz	
J-STD-020B L3 Preconditioning	30°C / 60% RH	192 Hours	151
Temperature Cycle	-55°C - 125°C	1000 Cycles	112
High Temperature / Humidity (HAST)	130°C / 85% RH	192 Hours	39

Inline Process Control

- ≻Reflow Profile
- ≻Flux height
- ≻Paste weight
- ≻Die pull
- ≻Leak test

7. Assembly

8. Testing / Inspection / Shipping

9. Design validation

Plan Dar						
MCM INTEGRAL-SUBSTRATE AND MCM (10 SCREENING - FINAL ASSEMBLY SUMMARY REPORT						
	STREAM OF MOST OF MOST DEVICES 1999 STORETIDE OF TRAL ASSESSED.					
Purchase Order Number: DW523505 AHENDHENT NUMBER:	10.78	5/1/1407		CERTIFICATE POR	-	ter 61
P/N: 2814922-001/T	CUTCHINE POR 201A023-10.7 LOT # 201129					a contra
Production Lot Number: 805529				STRIAL PURCHERS	12. 115-171.01	w103
Description: FC HCH	-	· · · · · ·	-		1	-
Inspectice Dates: 11/15/2005 through 08/21/2007	GREATE	DATES NOT AND A	THE MELTER	(OTTO)	ACCEPT/	12.001
Report Date: 06/29/2007	1	Inemal'Versal	3917	10X mildown	100%	bann.
	2	"Fuy Seam hep-	3017	10X	100%	Asse
	3	Internal Place graphy		7500 (minin/ma)	108%	Acapt
Submitted by:		(Superior Pass Cycling	1010	e	100%	Lingt
John J. Couris	1	Courses Accelerates	340	MIGINY	1075	Long
ATD - Quality Anusance Hanager		700	39.9	20010-2 +3%	44.(8)	houp
Assembly Technology Division	7	Home's Soil	1914	To & Pas and	108%.	Accept
8511 Ballou Arenue		Selection.		0000 000	10)	Devise
500 Delign, CA. 92123	9	Trend'Sud	3989	10X and an	+189%	Acart
	/1 See at # See Pd * Hea Pd * She Pd * She Pd * She Pd * She Pd	edad des aut (DBCM/m sperg-) sweinnen er ne PDD ser jeckmaal 97 het einged oormaa s	ela en SH 174 den 18 au 1 Finel Inspectors I	aclel te lez letze seu clappel	+= 55109973	ea chailtea

🔇 KYOCERA

Standard pkg

• Shock/Vibe

• Thermal

• Environmental

8. Testing / Inspection / Shipping

Design validation 9.

Table 4: RF+Out Differential Patricia Column Mea carement Date

• SEM

- 🞬 x, y, z measurements
 - Feedback to design

Complete Package Solution

Conclusions

- Space applications require "extreme reliability"
- At the same time, the choice of design and materials may be informed by:
 - Size, Weight
 - Performance
 - Cost
 - Other program requirements

