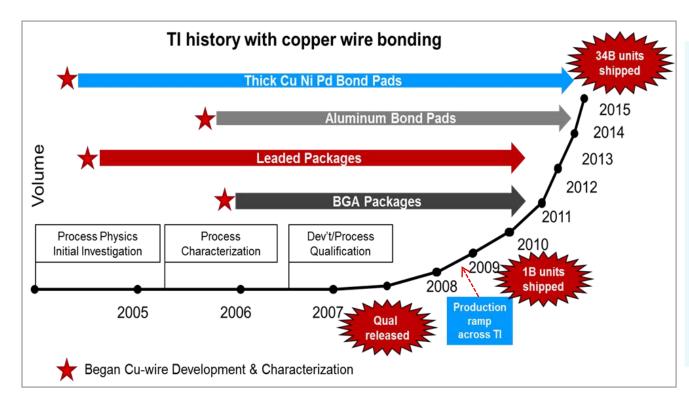
Cu Wirebond in PEMs:


Mukul Saran, Ph.D.

Texas Instruments Inc

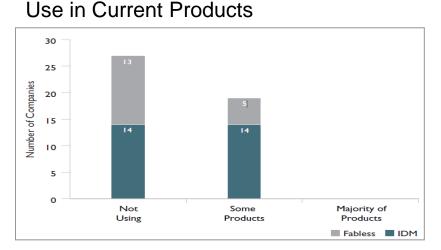
Dallas, TX

Looking Backwards to Now:

Applications:

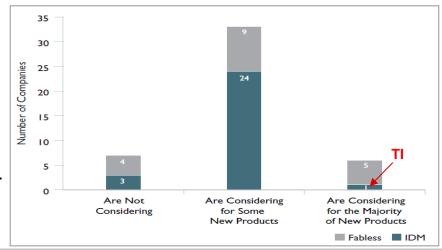
- Commercial
- > Telecom
- Industrial

 Automotive
 (safety, powertrain, Infotainment etc)


Packages:

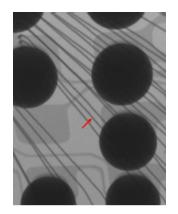
All (QFN, QFP, PDIP, SOIC, TSSOP, BGA & others)

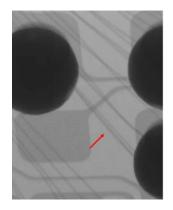
AT sites: > 14 (internal & external)


Rewind to 2010 - Industry Trends Then

Limited use in the global SC Industry, but growing.

>TI was leading the charge in conversion to Cu w/b.


Planned Use over Next 3 yrs



Talking About Cu

- What drove us to Cu?
- How Reliable is it?
 Very Reliable, <u>but</u>....
 Temperature Robust
 Temperature-Cycling Some differences from Au-wire
 Humidity, Bias and Temperature Requires more attention than Au-wire
- What Have we Learned Development and Qualification: Maintaining Quality & Reliability in Production:
- HiRel Concerns
- Summary

Reasons to Choose Cu

Property	Au Wire	Cu Wire	PCC Wire	
FAB Hardness (HV) Bond Hardness (HV)	60 80	85-95 128	80-95 w/gradient unknown	Motivation for Cu
Modulus (GPa)	75-100	80-90	80-90 inside 121 outside	 + Lower Material Cost + Lower resistivity
CTE (ppm/K)	14.2	16.5	16.5 inside 11.5 outside	+ Higher thermal conductivity
Resistivity (μΩ-cm)	2.3	1.7	1.7 inside 1.1 outside	 + Resistant to Kirkendall voids + Longer high-temperature
Corrosion Potential (V, SHE)	1.498	0.521	0.987 outside 0.521 inside	storage (HTS) life
Fatigue Resistance	Good even if Delaminated	Good if not delaminated	Unknown	
Constituent Distribution	N/A	N/A	Critical, Pd must be on outer FAB	

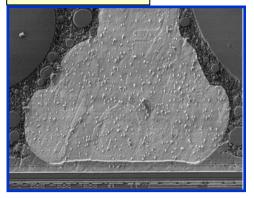
=> So, how reliable is Copper?

How Reliable Is Cu?

=> It can be very reliable well beyond Jedec stress guidelines

6

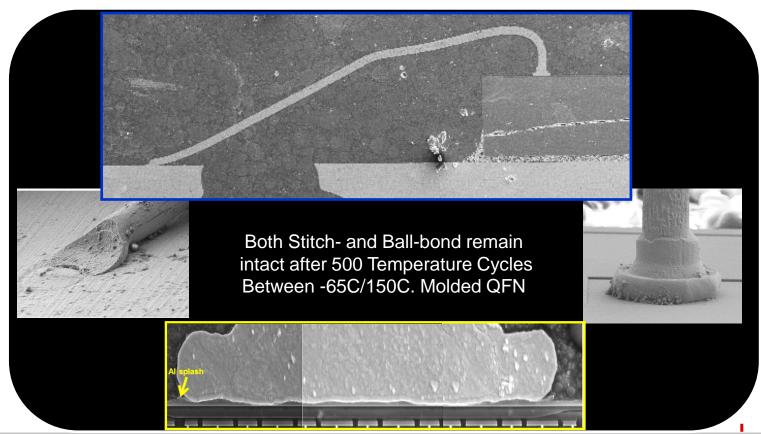
Cu-WB Reliability Stress Performance


Reliability Per	rformance]		
Reliability Stress	Condition	Minimum Required Duration	Duration Passed	
Unbias HAST	130C/85%RH	96	504	
Undias HAST	110C/85%RH	264	792	
BHAST	110C/85%RH	264	792	
Temp Humidity Bias	85C/85%RH	1000	1000*	
Hi Temp Oper Life	125C	1000	1000	
High Temp Storage	150C	1000	2000	
Temperature Cycle	-55/125C	700	4000	
Thermal Shock	-55/125C	None	2000	

* No package defects found

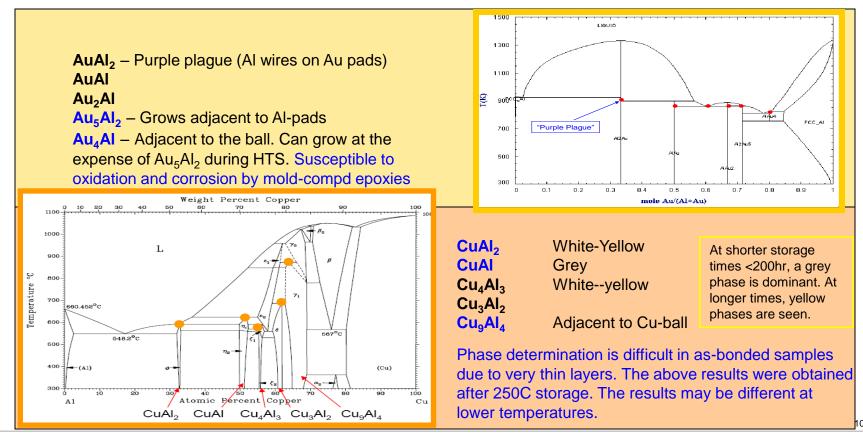
Bond-Shear

	Shear (g)			Ball X			Ball Y			Shear/Unit Area (mg/um2)			
Unit	Lot 1	Lot 2	Lot 3	Au Control	Lot 1	Lot 2	Lot 3	Lot 1	Lot 2	Lot 3	Lot 1	Lot 2	Lot 3
1	18.85	17.54	17.68	17.68	45.30	42.70	44.52	44.40	45.91	46.28	11.93	11.37	10.92
2	18.85	17.20	17.68	17.68	44.52	43.27	42.72	46.28	45.68	47.10	11.64	11.07	11.16
3	18.67	17.21	18.03	18.03	42.72		42.49	47.10		46.74	11.78		11.53
4	17.81	18.00	17.34	17.34	42.09		45.40	46.74		45.88	11.49		10.60
5	18.44	16.41	18.02	18.02	45.71		43.24	44.63		45.91	11.50		11.55


uHAST 672 HRS

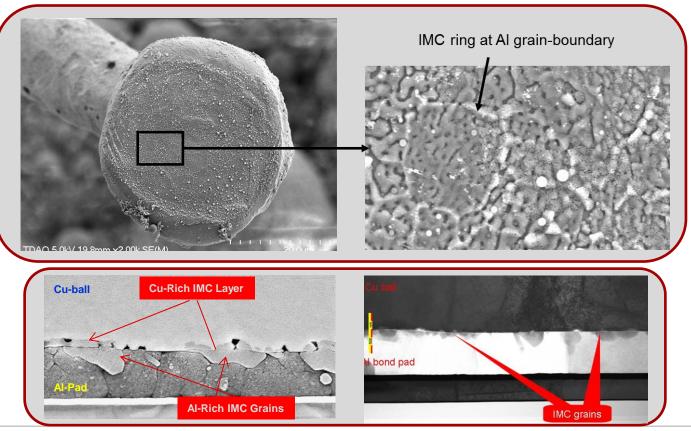
=> Cu-wirebond can demonstrate superior reliability performance in plastic packages

Cu-Wirebond (Post-500TC)



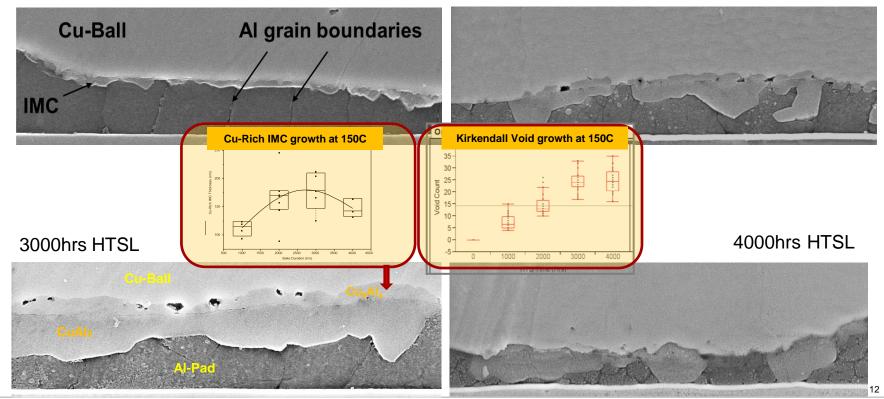
The Basics of Cu-Al IMC

- We know more, now that we can image the IMC using a SEM



IMC Formation – Phase Diagram

The Basics

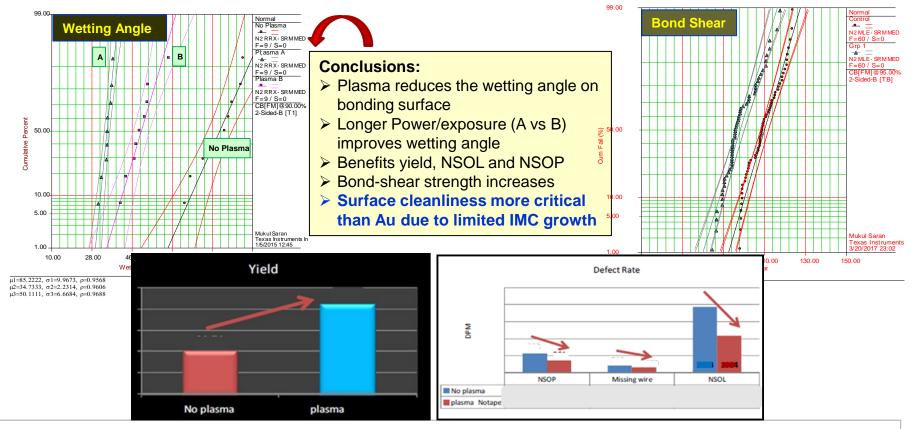

Ref: Copeland & Saran,, Copper to Aluminum bonding: IMC Characterization through New Mechanical Sectioning Methods, Proc 36th International Symposium for Testing and Failure Analysis, ISTFA 2010

Stable against Kirkendall Voiding

As-molded

2000hrs HTSL

Ref: Copeland & Saran,, Copper to Aluminum bonding: IMC Characterization through New Mechanical Sectioning Methods, Proc 36th International Symposium for Testing and Failure Analysis, ISTFA 2010

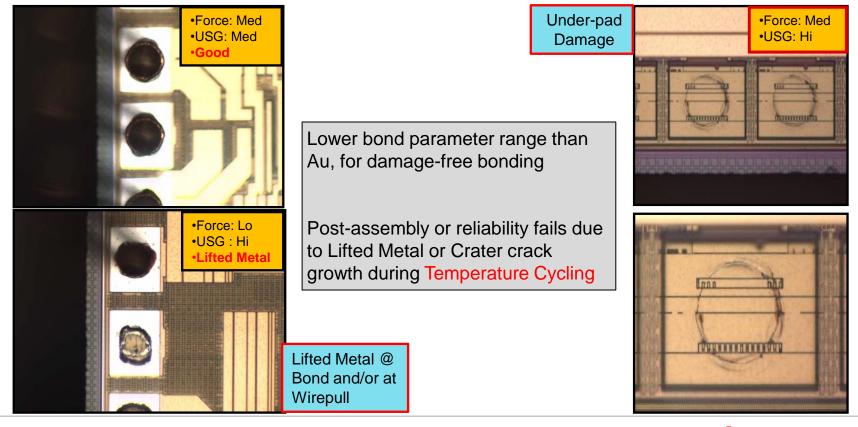

What Have We Learnt?

Knowledge is Power!

We have learnt a lot over the years!

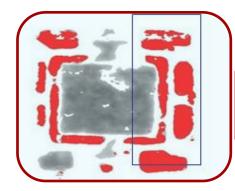
Bond-Surface Cleanliness Plasma Treatments

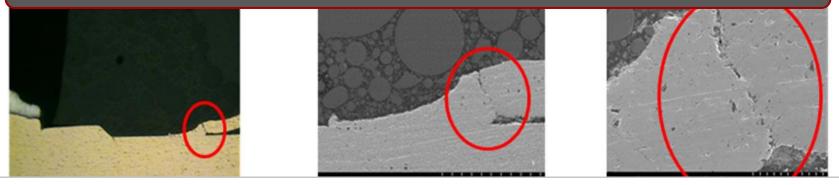
Sensitivity To Si Bond-Pad Stack


	Al-0.5%Cu	Al-2%Cu			
Low-K Dielec Sandwich + Pad Reinforcement	Abnormal	Abnormal ball of Wafer no.05			
Oxide/SOG Sandwich + No Pad Reinforcement	Abnormal ball of Wafer no.04	** Bond Parameters Optimized For This Stack up ** High Bond-Parameters (force/power) were used Used the same set on all other stack-ups Normal			

Changing underlying bond-pad structure impacts Wirebond outcomes.

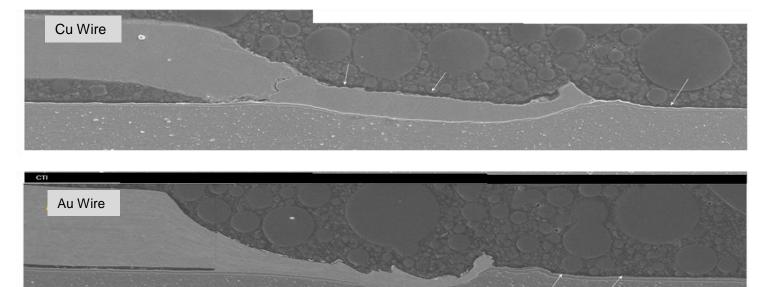
=> Bonding recipes may require optimization for different bond-pad metallizations


Bond-Pad Damage

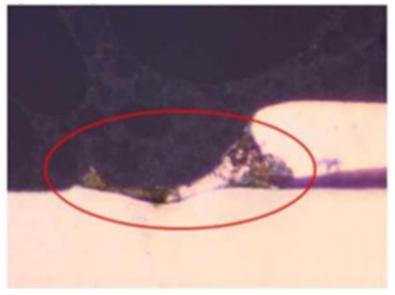

16

Dangers with Delamination – Stitch Cracks

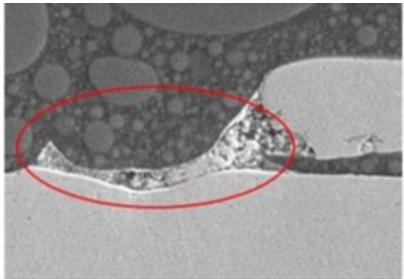
CSAM images show delamination after preconditioning in the die attach-pad areas, as well as on leadfinger areas


Mold-compound delamination can result in stitch-fracture during Temperature Cycling due to thermomechanical fatigue. Copper undergoes work hardening during stitch formation process.

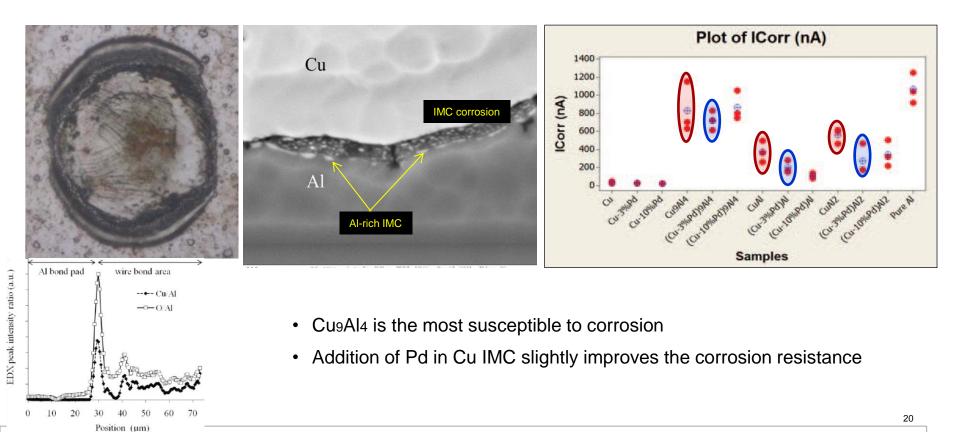
Mold-Delamination and Stitch Crack


СП

Cu Wire –vs- Au Wire Stitch After **1000 T/C**; Au Wire Had No Damage. Both have delamination t0 and after 1000 T/C. Arrows indicate mold-compound delamination

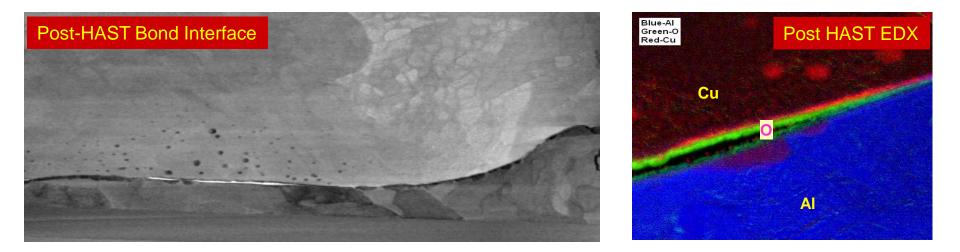


Dangers with Delamination: Stitch Corrosion


- Initially strong bonds can fail this way
- Robustness demands package integrity at 'Time-zero' and under stress

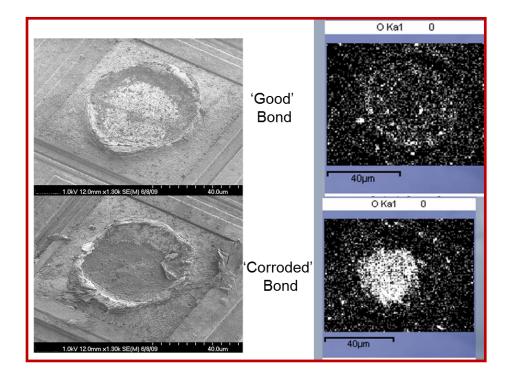
- How did the corrosion happen inside?
 - Delaminations reduce product robustness
 - Au-wire does not corrode

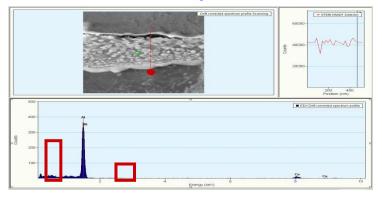
Corrosion of Cu-Al Bonds

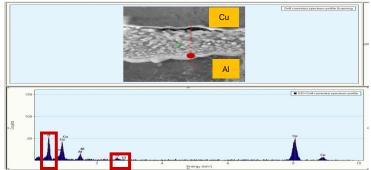


On the intermetallic corrosion of Cu-Al wire bonds, Tim Boettcher et al, pp 585-590, EPTC 2010

Evaluation of the Corrosion Performance of Cu-Al Intermetallic Compounds and the Effect of Pd Addition, Adeline Lim et al, EPTC 2015


Corrosion of Cu-Al Bonds

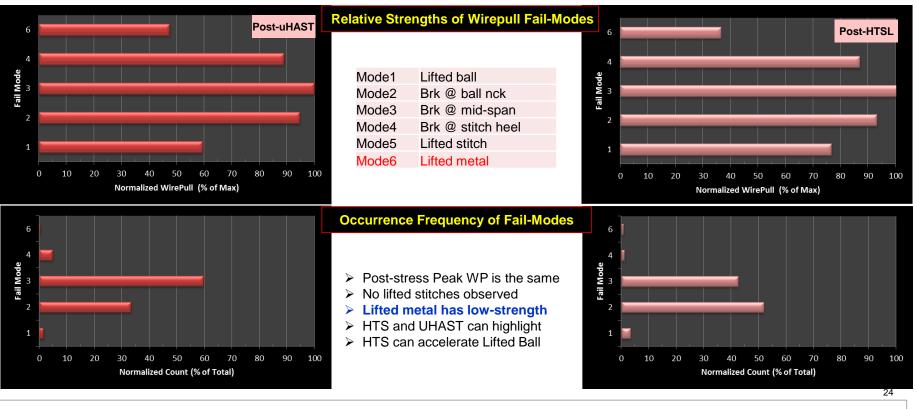

Cu bond interface corrodes by oxidation of the Cu/Al interface.
 Separation occurs in the oxidized IMC layer towards the interface with Al
 Separation can occur even in regions which may have previously grown an IMC.
 A well-formed bond with high bond-strength can fail easily due to corrosion


Cu-AI IMC Corrosion - Chlorine

No O or CI in Aluminum just below the interface.

CI & O in layer between AI & Cu.

Mold-Compounds: Role in Cu Corrosion


Supplier	Mold-Compd	Autoclave (121C, 100%RH, 2atm)	ub_HAST (110C / 85%RH)	ub_HAST (130C / 85% RH)	Biased HAST (130C/85% RH)	THB (85C/85% RH)
		-	Passed	-	-	Passed
		-	Passed	-	-	Passed
		-	Passed	-	-	Passed
		-	Passed	-	-	Passed
		-	Passed	-	-	Passed
		-	Passed	Passed	Passed	Passed
		Passed	-	-	In Qual	-
		Passed	-	Passed	-	In Qual
		Passed	-	-	Passed	-
		Passed	-	-	Passed	-
		No Plan	No Plan	No Plan	No Plan	No Plan
		Passed	-	-	No Plan	-
		Passed	-	-	Passed	-
		Passed	-	-	Passed	-
		Planned	-	-	Planned	-
		Passed	-	-	Failed	-
		Passed	-	-	Passed	-
		Passed	-	-	Passed	-
		Failed	-	Passed	Failed	\mathbf{k}

Biased-HAST corrosion is prominent for certain mold-compounds, even if they are 'green'
 Autoclave can also show corrosion without bias.

> Failures do not correlate with residual CI specs for the mold-compd.

Wirepull: Exposure to Humidity or Temperature

What Have We Learnt?

Looking Back

Development and Qualification:

- √ Development Process
 - $\sqrt{}$ engaging the supply chain (engineering/fab/AT/suppliers)
 - $\sqrt{\rm Corner}\,{\rm DOE's}$ making the bonds fails
- \checkmark Reliability/Robustness by Design
 - √ Selecting Bill of Materials mold-compounds, Chlorine, Au/Pd-Coated Cu, Roughened leadframes, capillaries
 - $\sqrt{}$ Bonding-Recipe Development Process Technology, Device layout, bond-window
 - $\sqrt{}$ Reliability- Relationship to initial bond-strength
 - $\sqrt{Package integrity delamination in packages bond-breaks, corrosion}$

$\sqrt{Enabling Techniques}$ –

- \checkmark SEM x-sections of IMCs,
- $\sqrt{}$ laser decapsulation,
- √ Bond-pad IMC mapping,
- $\sqrt{}$ Rapid in-line bond-inspection for over-bonding checks
- $\sqrt{}$ Au- vs Cu-identification in encapsulated devices
- $\sqrt{-}$ TEM analysis techniques

25

What Have We Learnt? Looking Back

Maintaining Quality & Reliability

- √ Assembly process compatibility and integration (dieattach, plasma, trim-n-form, etc)
- Manufacturing Discipline Bonder set-ups, bonder-tobonder matching, handling & cleanliness, across-theboard assembly process controls, preventive maintenance
- √ Automation in assembly lines recipe locks, change control
- $\sqrt{Monitoring}$:

SITE	PULLOUT_ DATE		COMPLIANCE_ PERIOD	RELCODE	RELDB_ STATUS	FINISH DATE	D DATE
MLA	2017-01-05	9211260	1	MLAREL.17.SN74HCT3.01001	Completed	2017-02-17	2017-02-17
MLA	2017-01-10	7003865	1	MLAREL.17.SN74LVC2.01001	Completed	2017-02-22	2017-02-22
MLA	2017-01-10	7019179	1	MLAREL 17.UCC2720101001	Completed	2017-03-02	2017-03-02
MLA	2017-01-10	9123533	1	MLAREL 17.LMZ34002.01001	Completed	2017-03-06	2017-03-06
MLA	2017-01-02	9118674	1	MLAREL 17.276000QR.01001	Completed	2017-02-24	2017-02-24
MLA	2017-01-10	7032027	1	MLAREL.17.TPS84620.01001	Completed	2017-03-06	2017-03-06
MLA	2017-01-04	9232145	1	MLAREL 17.CD4051BM.01001	Completed	2017-02-17	2017-02-17
MLA	2017-01-05	9187661	1	MLAREL 17.CD74HC20.01002	Completed	2017-02-17	2017-02-17
MLA	2017-01-08	9222643	1	MLAREL 17.ADS 1254E .0 1001	Completed	2017-02-22	2017-02-22
MLA	2017-01-10	7011797	1	MLAREL.17.SN74LVC2.01002	Completed	2017-02-22	2017-02-22
MLA	2017-01-02	9171964	1	MLAREL 17.75220ATR.01001	Completed	2017-02-27	2017-02-27
MLA	2017-01-03	9171684	1	MLAREL.17.TLC7528C.01001	Completed	2017-02-22	2017-02-22

Hunting out the pesky Cu-'killers': Manufacturing materials/environments (consumables, facilities, storage conditions, transportation, floor life, personnel etc)

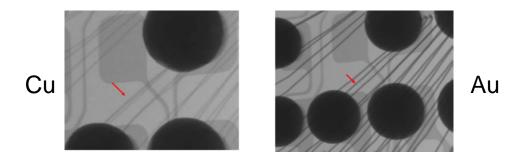
Navigating to a better place

- Get a handle on Chlorine
- Control Delamination in packages
- Identify better material solutions
- Decapsulation for wirepull analysis.

HiRel Concerns

Critical Applications

- Critical Applications; Application-specific harsh environments
 - Avionics
 - Munitions
 - Missile Systems


- Long term dormant storage
- Extensive temperature cycling
- High humidity
- Potential risks identified by the industry not unique to HiRel
 - Bond integrity (Cu bonding to aluminum requires much tighter process controls and environments)¹
 - <u>Sporadic DPPM level corrosion</u> due to mold compound interaction²
 - Bondwire breaks during temperature cycling (Higher CTE of Cu than Au, resulting in a higher failure rate in the presence of delamination)³
 - <u>Corrosion at stitch-bonds</u> due to moisture/solvent ingress in conjunction with delamination (not seen with Au wire)
- Commercial qualifications do not use sequential stresses. Additional application-level qualifications necessary

¹ Luke England and Tom Jiang. "Reliability of Cu Wire Bonding to AI Metallization". Electronic Components and Technology Conference. 2007.
 ² Hui Teng, et al. "Effect of Moisture and Temperature on AI-Cu Interfacial Strength". International Conference on Electronic Packaging Technology & High Density Packaging, 2008.
 ³ Bart Vandevelde and Geert Willems. "Early fatigue failures in Cooper wire bonds inside packages with low CTE Green Mold Compounds". 4th ESTC Conference. 2012, Amsterdam, The Netherlands. 28

Defense OEM Concern

- COTS copper bondwire identification
 - Mixed copper and gold bondwire devices in end system prior to customer qualification
 - A simple method to identify the wire-type, base on Atomic number differences between Au and Cu: X-Ray

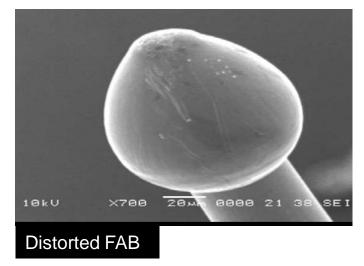
Summary

- Cu-wirebond is
 - intrinsically capable of high reliability in plastic packages
 - sensitive to several external factors and environments
 - in production for several years in a variety of commercial & Industrial applications
- · Key care-abouts for reliability in commercial applications are
 - Bond integrity
 - Sporadic DPPM level corrosion
 - Corrosion and bond-cracks when package-integrity is compromised

Summary

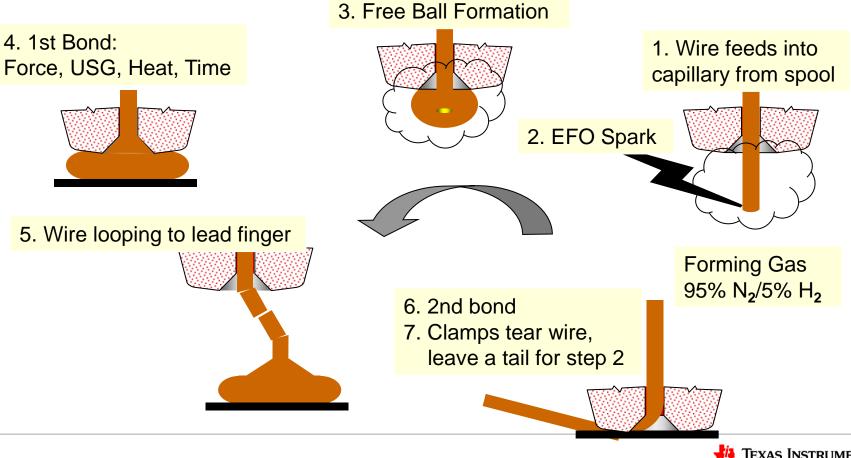
- Cu-wirebond requires attention to the following key areas
 - Design/Structure of Bond-pads on the die
 - Selection of Package Materials
 - Design & Control of Assembly Processes (e.g. DOE, die-attach, mold, trim-form etc)
 - A new mindset on the factory floor, and manufacturing discipline
 - Seamless collaboration between Device-manufacturer, Assembly/Test and their suppliers

Back Up



Free-Air Ball Formation

Desired FAB shape


Oxidation of Cu during EFO leads to distorted ball during cool-down.

> Oxidized ball presents bonding challenges – NSOP or pad-damage.

Copper Wire Bond Process

Texas Instruments