

A LOW PROFILE HIGH POWER INDUCTOR FOR HIGH RELIABILITY SPACE APPLICATIONS

David Olson Vishay 4418 Haines Road Duluth, MN 55811 218.727.3115 david.olson@Vishay.com

MIL-STD-981 OVERVIEW

Design, Manufacturing and Quality Standards for Custom Electromagnetic Devices for Space Applications

Materials and Construction:

- Outgassing per ASTM-E-595
- Dielectric Strength tapes, films, and Insulating materials
- Magnet Wire MW-1000 standard, minimum wire size spec
- Internal solder melt temp > 260 °C
- Solder and Flux per J-STD-005 No pure Tin
- Wire winding & placement
- Terminals anti-rotation features, twist
- Impregnation and potting degassing required

POWER INDUCTORS

- Current rating > 1A
- Typically used for energy storage in DC-DC converters and high power filtering applications.
- Core materials and wire selected to achieve desired DCR, AC Loss, frequency response, and inductance value among other specifications.
- Wound on various core and bobbin types, i.e., Toroid, pot cores, Ecores,...

DESIGN CONSIDERATIONS FOR A SPACE GRADE POWER INDUCTOR

- Low Loss
- High saturation current for transient response
- Low aging stable electrical characteristics over time
- Wide operating temperature range -55 to >150° C
- Mechanical Stability high vibration/shock environments
- Low Outgassing per NASA/ASTM-E-595
- Low Profile for limited board space
- SMD packaging high density routing

COMPONENTS OF THE IHLP INDUCTOR

DC RESISTANCE (DCR)

- Copper losses (I²R loss) due to the DC resistance of the winding and terminals.
 - Frequency independent
 - A function of temperature coefficient of the copper wire increases with temperature

COPPER WIRE:

- Oxygen free Cu
- Polyamide Coating
 - 5KV Breakdown
 - High Temp Operation 200 C

CONTINUOUS LEAD FRAME:

- Oxygen free Cu
- Sn/Pb Plating over Nickel Base Layer

THE CORE MATERIAL

- Base material is a proprietary atomized iron alloy
- Insulating coating is applied to iron particles
 - Insulation provides a distributed gap core
 - Reduces eddy currents and core loss
 - Provides good saturation characteristics
 - A distributed gap reduces EMI
- High temperature epoxy resin is added
 - Strength
 - Durability for thermal & Mechanical stability

Iron Particle

Fe3PO4 Insulation

MANUFACTURING PROCESS

Core Loss vs. Time

© 2017 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED.

CAPACITORS • DIODES • INDUCTORS • MOSFETs • OPTOELECTRONICS • RESISTORS

Inductance (L) vs. Time

Saturation Comparison

© 2017 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED.

CAPACITORS • DIODES • INDUCTORS • MOSFETs • OPTOELECTRONICS • RESISTORS

Saturation vs Temperature - Ferrites

© 2017 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED.

CAPACITORS • DIODES • INDUCTORS • MOSFETs • OPTOELECTRONICS • RESISTORS

SUMMARY

- High Current, Low Profile Inductor
- Ultrasonic welding No solder joints/internal reflow issues
- Solid Lead Frame Minimal connection points and DCR
- Shock Resistant Tested to 50G
- SMD
- Mechanical Stability » Electrical Stability

THANK YOU!