

TANTALUM CAPACITORS DIVISION

CMSE – 2017
ADVANCED POLYMER
CAPACITORS

ABOUT THE AUTHORS

Alex Eidelman, VP R&D

E-mail: <u>alex.eidelman@vishay.com</u>

Charles Pothier, Marketing Director

E-mail: Charles.Pothier@vishay.com

Yongjian Qiu, Sr. R&D Specialist

E-mail: Yongjian. Qiu @vishay.com

Pavel Vaisman, Sr. R&D Manager

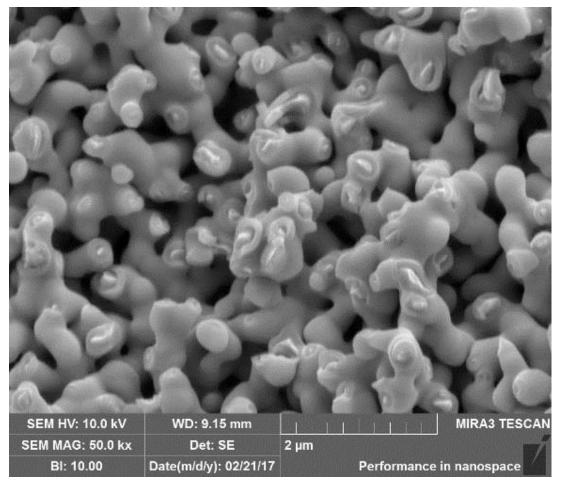
E-mail: pavel.vaisman@vishay.com

Yuri Stangrit, R&D Project Leader

E-mail: Yuri.Stangrit@vishay.com

AGENDA

- Vishay's traditional strength in Tantalum technology.
- 2. Vishay's patented MicroTan® packaging technology for best-inclass performance.
- Failure rate of Vishay Polymer capacitors.
- 4. Product screening for improved reliability performance.
- 5. Vishay T54 HiRel COTS Polymer capacitors' performance.


ADVANTAGES of VISHAY ANODE TECHNOLOGY

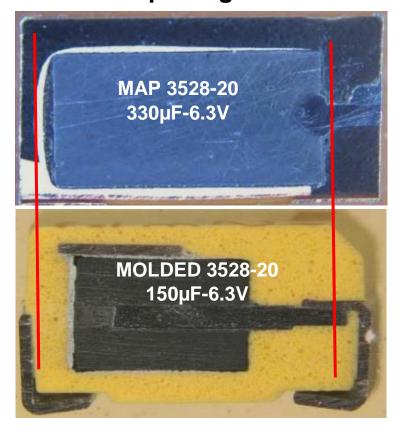
Process step	Industry practice	Vishay practice	Advantage of Vishay technology
Anode Delubrication	Thermal [Burn out @1000°C] Carbon content ~ 300ppm	Liquid [Wash out @85°C] Carbon content ~ 30ppm	Defect free Dielectric Low DC Leakage Long term reliability
Magnesium Deoxidation	Not applied Oxygen content ~5000ppm	Applied Oxygen content ~4000ppm	
Wire attachment	Embedded Good strength attachment Not compatible with Deox	Welded Excellent strength attachment Compatible with Deox	Improved ability to withstand Reflow stress
			VISHAY-SPRAGUE


SINCE EARLY 90"

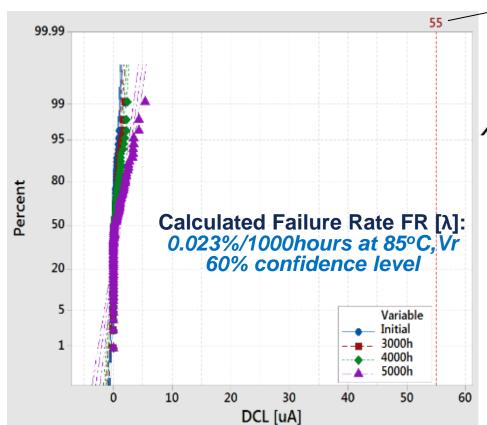
ADVANTAGES of VISHAY ANODE TECHNOLOGY

Typical appearance of crystals in Ta₂O₅ dielectric

Defect free Ta₂O₅ dielectric formed over High CV sintered Ta slug by anodization at 50V. No crystals found!


HIGHER VOLUMETRIC EFFICIENCY MULTI ARRAY **PACKAGING**

Same CAP value in smaller package


Robust design with lower DCL and ESR by use of lower CV Ta powder and/or higher formation voltage

Higher CAP value in the same package

VISHAY 105°C, VR LOAD LIFE FOR T58 22µF-25V BB CASE

0.1CV value

$$\lambda_{hour} = \frac{Chi^{2}(\alpha, v)}{2 \times D \times H \times Af_{total}} = \frac{Chi^{2}(\alpha, v)}{2 \times EDH}$$

λ hour. Failure rate

 α : confidence level (90%)

υ=2·n+2; n: number of observed failures

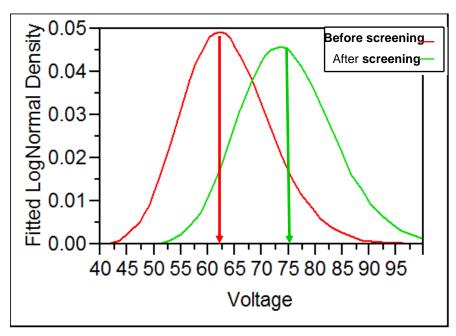
D: tested units H: test hour/unit

Af: acceleration factor

EDH: H x D x Af

- Advance anode technology provides DC leakage values well below traditional 0.1CV limit.
- DC leakage stays extremely low and stable over 5000hours of Life test at full rated conditions!

DC LEAKAGE SCREENING at ELEVATED TEMPERATURE and VOLTAGE. T58 22µF-25V BB CASE

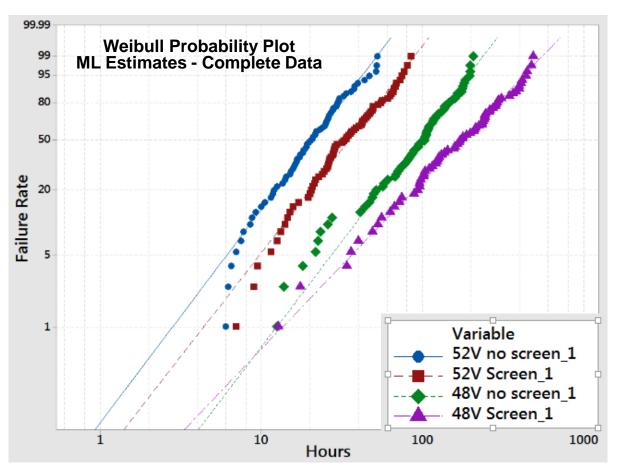

- Determine Breakdown Voltage [BDV] of representative sample.
- Sample test DCL at 125°C at Voltage < Average BDV; define [Med+26] limit.
- Screen entire lot at [Med+26] limit.

Avg. BDV significantly increases!

6.5 - 6 - 7 5.5 - 4.5 DCL med + 20 - 3.5 - 3 - 2.5 - 2 - 1

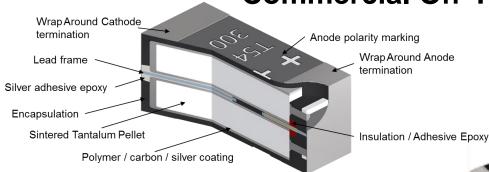
DCL distribution at 125°C

What about reliability?



BDV distribution

IMPACT of SCREENING on FAILURE RATE


Since tests at rated conditions do not produce failures, Accelerated Test at 105°C and elevated voltage applied.

Test Voltage	FR [%/1000h]	
48V	0.005	
48V Screen	0.003	
52V	0.012	
52V Screen	0.009	

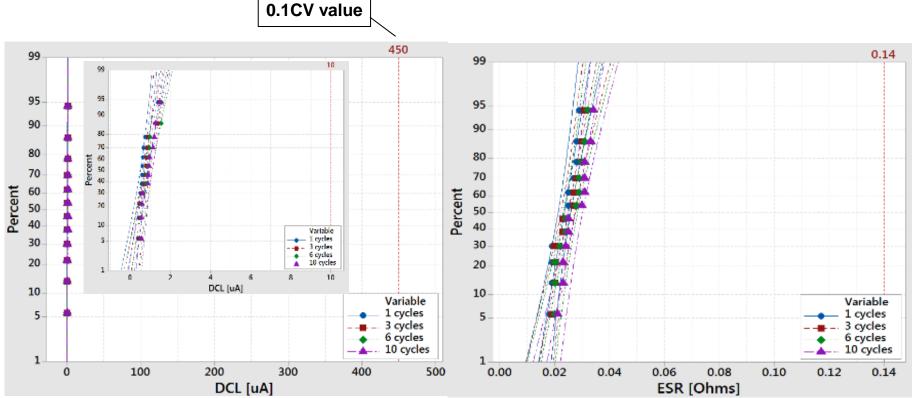
Vishay

vPolyTan[™] Polymer Surface Mount Chip Capacitors, Low ESR, Leadframeless Molded Type, Commercial Off-The-Shelf (COTS)

KEY PERFORMANCE CHARACTERISTICS		
ITEM	CONDITION	
Life test at +105 °C	2000 h application of rated voltage at 105 °C, MIL-STD-202 method 108	
Shelf life test at +105 °C	2000 h no voltage applied at 105 °C, MIL-STD-202 method 108	
Humidity tests	At 60 °C / 90 % RH 500 h, no voltage applied	
Surge voltage	105 °C, 1000 successive test cycles at 1.3 of rated voltage in series with a 33Ω resistor at the rate of 30s ON, 30s OFF	

FEATURES

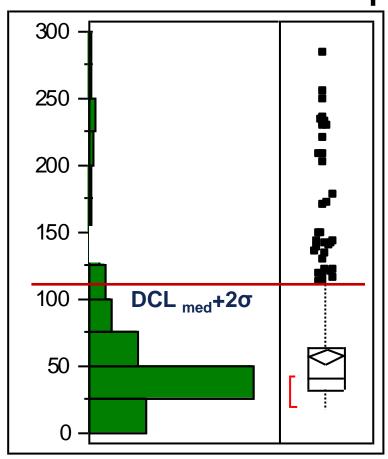
- Ultra-low ESR
- High Reliability Processing including:
 - 100% Surge Current Tested
 - Accelerated Aging
 - Thermal Shock
 - Statistical DC Leakage screening at elevated temperature and Voltage
- Molded case 7343 EIA size
- Terminations: wraparound


PERFORMANCE / ELECTRICAL CHARACTERISTICS

Operating Temperature: -55°C to +105°C Capacitance Range: $15\mu F$ to $470\mu F$ Capacitance Tolerance: \pm 20 % Voltage Rating: $16\ V_{DC}$ to $75\ V_{DC}$

April 2017

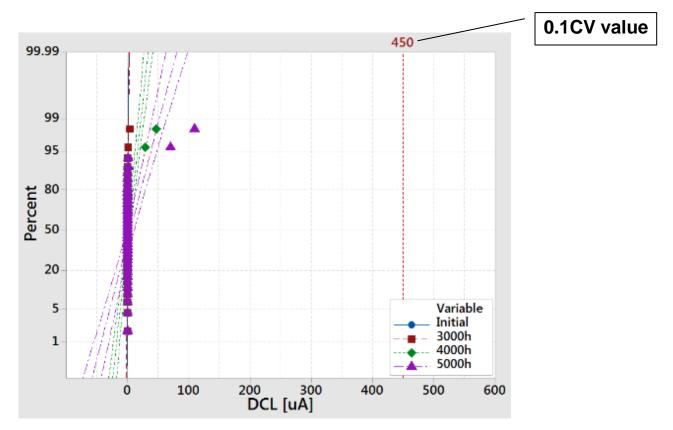
T54 150µF-30V EE-CASE 10X- REFLOW



- Extremely low and stable DC Leakage achieved through use of Deoxidation and welded wire anode technology.

 Double-anode construction provides low and stable ESR after 10
- Reflow cycles.

DC LEAKAGE SCREENING at ELEVATED TEMPERATURE and VOLTAGE. T54 150µF-30V EE-CASE



DC Leakage screening to [Med+26] limit at 125°C and Elevated Voltage removes outliers, which are potential long term reliability failures.

DCL distribution at 125°C

105°C, Vr LOAD LIFE for T54 150µF-30V EE CASE

DC leakage stays extremely low and stable. Slight DCL increase appears on several units only after 3000hours of Life test at full rated conditions, which confirms the efficacy of screening method.

CONCLUSIONS

- Vishay advanced anode technology in combination with robust product design provides highly reliable Polymer capacitors reaching failure rates below 0.1%/1000hours.
- Application of DC Leakage screening at elevated temperature and voltage further reduces failure rates below 0.01%/1000hours.
- 3. Further testing is underway in order to define failure rate levels for variety of T54 HiRel COTS Polymer capacitors.

April 2017

April 2017 15