

CMSE 2017 21st Components for Military & Space Electronics

THE NEW TIGHTER HERMETICITY LEAK TEST REQUIREMENTS - EUROPEAN OVERVIEW.

GONZALO FERNANDEZ ROMERO

ALTER TECHNOLOGY TÜV NORD C/ Tomas A. Edison, 4, PCT Cartuja 93, 41092 – Sevilla (SPAIN) Tf.+34 954467050 – gonzalo.fernandez@altertechnology.com

TÜV NORD GROUP

ROUP April 11-13th, 2017. Four Points by Sheraton (LAX) Los Angeles, California (USA)

THE NEW TIGHTER HERMETICITY LEAK TEST REQUIREMENTS - EUROPEAN OVERVIEW.

OUTLINE:

- 1. Introduction.
- 2. Normative and test methods review.
- 3. Data collection and European assessment.
- 4. ESCC temporary position.
- 5. Ongoing activities and further works:
 - 1. Technical assessment
 - 2. Inter-comparative study
 - 3. ESCC leak test method?
- 6. Summary and conclusions.

1.- INTRODUCTION

The recent modifications made in the seal test requirements under the MIL system are affecting the European space component community: manufacturers, space agencies, users, institutions, test labs,...etc.

- There are not European Space standards / normative related to hermeticity test on EEE components, thus MIL system is used as a reference.
- Lack of field failure. No hermeticity field failures on ESCC parts were recorded on devices tested during screening using the old MIL test failure criteria. Doubts on the need to change requirements.
- Other factors:
 - □ Why large differences between 750 versus 883 method?
 - Limited test resource covering all leak test conditions in Europe, with cost & lead time impacts.
 - governmental regulations influence the implementation of some techniques, like ⁸⁵Kr...
 - Different physical principles on different test conditions, test techniques correlation concerns, technical doubts...

- 21st Components for Military & Space Electronics Conference CMSE 2017
- 3

2.- NORMATIVE AND TEST METHODS REVIEW.

There are different standards linked with leak test. Some generic (not focus on EEE components) and some specific to EEE components.

	MIL-STD-883 TM 1014.	"Test Method Standard. Microcircuits". Seal Test Method TM 1014.							
Σ	MIL-STD-750 TM 1071.	"Test Method Standard. Test Methods for Semiconductor Devices. Method fo Discrete Semiconductor Devices". Hermetic Seal Test Method 1071							
JEDEC	JESD22-A109-B.	"Hermeticity".							
	ASTM F2391-05 (2011).	Standard Test Method for Measuring Package and Seal Integrity Using Helium as the Tracer Gas.							
	ASTM E432-91 (2011).	ASTM E432-91 (2011) Standard Guide for Selection of a Leak Testing Method.							
STM	ASTM E499/E499M-11.	Standard Practice for Leaks Using the Mass Spectrometer Leak Detector in the Detector Probe Mode1, 2.							
Ā	ASTM E493/E493M-11	Standard Practice for Leaks Using the Mass Spectrometer Leak Detector in the Inside-Out Testing Mode.							
ASTM E498/E498M-11		Standard Practice for Leaks Using the Mass Spectrometer Leak Detector o Residual Gas Analyzer in the Tracer Probe Mode1, 2							
C	IEC 60749-8: 2002.	Semiconductor devices - Mechanical and climatic test methods - Part 8: Sealing.							
<u> </u>	IEC 60068-2-17:1994,	Environmental testing – Part 2: Tests – Test Q: Sealing.							
=	IEC 60068-2-17:1994,	Environmental testing – Part 2: Tests – Test Q: Sealing.							
C	IEC 60749-8: 2002.	Semiconductor devices - Mechanical and climatic test methods - Part 8: Sealing.							
	ASTM E498/E498M-11	Standard Practice for Leaks Using the Mass Spectrometer Leak Detector o Residual Gas Analyzer in the Tracer Probe Mode1, 2							

Currently the MIL leak test methods look like the most detailed and updated document to carry out leak test on EEE components for High reliability application. Nevertheless there are still doubts and technical concerns to be solved.

21st Components for Military & Space Electronics Conference CMSE 2017

- The different test conditions are based on different physical principles, and often, the leak rate is obtained through an indirect measurements, like happens with the OLT method, which needs correlation factors, that may be, are not constant for all test cases, making difficult the comparison.
- There are other promising techniques based on in-situ measurements: MEMS structures,..., etc., but detailed calibration processes are mandatory to correlate measurement, and there are not any available standard.

MEMS Thin Film Encapsulation. Fabio Santagata Ph.D. Thesis (Delft University of Technology).

Example of leak test collected data from a qualified MIL manufacturer.

Assessment on the available DLA lab suitability for Leak test.

Hermeticity Test Method Survey. At European Level.

ASSESSMENT	PN	Screening	Reject1	Groups	Reject2	Total	Total Reject
	JANS2N2222AUB	510	0	00	0	007	0
	JANS2N2907AUB	526	0	89	0	615	0
	JANS2N3700UB	524	1	201	0	725	1
	JANS2N5401UB	542	0	201	0	743	0
KD85 JANG LEAKAGE STATUS	JANS2N2907AUB	1088	0	156	0	1244	0
R [®] JANS LEARAGE STATUS	JANSR2N2907 AUB	598	0	44	0	642	0
	JANS2N2222AUB	530	0	156	0	686	0
2016 NOV 14 TH	JANSR2N2222AUB	531	0	44	0	575	0
	JANS2N5551UB	516	0	201	0	717	0
	JANSM19500/773-01	1060	0	201	0	1261	0
	JANSR2N2222AUB	1094	0	156	0	1250	0
	JANSR2N2907 AUB	1270	0	156	0	1426	0
	JANSR2N5401UB	600	0	156	0	756	0
	JANSR2N5551UB	570	0	156	0	726	0
	JANSR2N2907AUB	250	0			250	0
	JANSR2N2907AUB	250	0			250	0
	JANSR2N2907AUB	510	0			510	0
	JANSR2N2222AUB	531	1			531	1
	JANSR2N2222AUB	680	0	156	0	836	0
	JANSR2N5401UB	260	0			260	0
	JANSR2N3700UB	818	1	156	1	974	2
	JANSR2N3700UB	270	0			270	0
	JANSR2N2907AUB	1173	0	156	0	1329	0
	JANS2N3700UB	1137	0			1137	0
	JANSR2N2222AUB	912	1	44	0	956	1
	JANS2N3700UB	260	0			260	0
life, guamented	JANS2N2222AUB	260	0			260	0
	JANS2N2222ALIP	200	0			200	0
	Total	17538	4	2518	1	20056	5

21st Components for Military & Space Electronics Conference CMSE 2017

MIL-STD-883 TM 1014 DLA Commercial Lab Suitability

l about	Test Method																		
Analysis	(Condition					—			TEST O	ON	DITIO	MIC							
COnvical Solutions LLC	(conditions)	AL	A									143							
CORWIL	Will-std-883 TM 1014	ΗĒ		A4	B1	B2	B3	C1	0										16 laboratories pe
Cobham Environmental	Mill-std-883 TM 1014	H¢-		<u> </u>	-			X		5	C4 (C5	DYE PEN	GT	CUI				re laberateriee pe
Test Services (Sam Di	Mil-std-883 TM 1014	- <u>^</u>	+×		L			X	+	-+						H2 Z			leak test using the
(San Diego)								Ļ^	+	-+	_								
Cobham BAD A																			fine leak test cond
Criteria In RAD Solutions	Mil-std-883 TM 1014	<u>X</u>	X					v											
Citteria Labs	Mil-std-882 TM 4014		L			<u> </u>	<u> </u>	<u>^</u>		A									A2, and per-fluord
DPA Components	Mil.std 000 TM 1014	Х	X			<u> </u>	<u> </u>	V			X	х							look toot oondition
ECR Laboratories, Inc.	Mill stid 883 IM 1014	Х	X			-	<u> </u>	X											leak test condition
Golden Altos	Will-std-883 TM 1014	Х	X		<u> </u>	-		X											
Hi-Reliability	Mil-std-883 TM 1014	Х	X	+-	<u> </u>		<u> </u>	X		-							7		Four labe have co
Microplostrania	Mil-std-883 TM 1014				<u> </u>			X		_									Four labs have ca
		х	x																run ⁸⁵ Kr testing us
ISE Labs Inc.	Mil-std-883 TM 1014		X	+-			-	X		_									Turi Tri testing us
Intersil Corporation	Mil-std-883 TM 1014	<u> </u>	<u>†</u> ^			$ \frown$		X		_									conditions B1 B2
IsoVac Engineering	Mil-std-883 TM 1014	<u> </u>	<u> </u>	┿╋┷	┝╱	-	44	Х		_									
Incorporated					.														.
Micross Components	Mil-std-882 TM 1014	-	-	+	<u>X</u>	X				_		_							Only one lab is ce
Orlando	1411 STG-003 1141 T014																		
Oneida Bosoarch	Mil and 000 TM 4044	X	X	+ -				X		_		_							OLI and CH testin
Comdeas las	14III-210-002 HM TOT4																		the end to the elevelor
Services Inc.		<u> </u>	X	+ -	Х	X	Х			_									these two techniq
Oneida Research	Mil-std-883 TM 1014																		
Services Inc.		X	X	4_	Х	X	Х			_									popular.
Pantronix Corporation	Mil-std-883 TM 1014	Х	Х					Х		_		_		-					• •
Pernicka Corporation	Mil-std-883 TM 1014									-	_	_		╉	X	×			
Precision Test Solutions	Mil-std-883 TM 1014				Х	Х	4			_	_	-							
Silicon Turnkey	Mil-std-883 TM 1014																		
Solutions		Х	Х					Х		+									
Solutions	Mil-std-883 TM 1014	X	Х					X		-+-	-			-+					
Six Sigma	Mil-std-883 TM 1014		T																
e2v Aerospace and	14111 2 2							X		_	_	-							
Defense	1	X						Х									_		
Defignse 51	st Compon	en	ts	fo	rl	Иil	lita	rv	1 &	S	pa	ac	e Ele	ect	tro	nics	C	on	ference CMSE 2017
e2v Aerospace and	Mil-std. 882 T 1 1014	X	X	-				X		-		-					_		

- 16 laboratories perform the leak test using the classic He fine leak test conditions A1 and A2, and per-fluorocarbon gross leak test conditions C1.
- Four labs have capabilities to run⁸⁵Kr testing using the conditions B1, B2 or B3.
- Only one lab is certified for OLT and CH testing, being these two techniques less popular.

MIL-STD-750 TM 1071 DLA Commercial Lab Suitability

			_							Tool		11.1					
Laboratory	Test Methods							Γ		rest	Con	ditio	ins				
Aeroflex-Metelics	(Conditions)		B	C	D	E	J	K	L1	Gt	G1	52	CH1	CH2	H1	H2	12
Cobham RAD Solutions	Mil-std-750 TM 10/1	X	X	₽		Х					Х					116	44
Hi-Reliability	Mil-std-750 TM 107	X	<u> x</u>	₽	_			┝			X	X					
Microelectronics	Star 7 30 1141 107														/		
soVac Engineering	Mil-std-750 TM 107		\vdash	\vdash	-			┢		-					X	X	
Incorporated		Х	X								x	x					
Oneida Research Services	Mil-std-750 TM 10: 1		┢	F	Γ												
Inc.		Х	X								X	Х			Х	Х	
Pernicka Corporation	Mil-std-750 TM 107									_			Х	Х			_
Precision Test Solutions	Mil-std-750 TM 107	Х		X		Х				_		χ		4		_	_
Product Testing Center-	Mil-std-750 TM 107.																
Electronic		_		Į					_	╋	v	V				-1	_
Semitronics Corporation	Mil-std-750 TM 1071		X	Ļ	V	-		\vdash		-	^	1		_	x		
Tektronix Service Solutions	Mil-std-750 TM 1071		2	X	X	-		_				-			X	Τ	
Tektronix Service Solutions	Mil-std-750 TM 1071		v	Х	X	-	-	-	-	-	X	X				_	
Semitronics Corporation	Mil-std-750 TM 1071		~					-									
Electronic																	

- Only 10 certified laboratories.
- 5 perform ⁸⁵Kr following different test conditions (A, B, G1 or G2).
- Classical Fine He test conditions (H1, H2) are only covered by three certified lab.
- CHLD conditions are only offered by one laboratory.
- There is not any certified lab offering OLT test conditions for discrete devices.

Engineering Practice Study: "MIL-STD-883, Method 1014 Survey of Industry to Determine Which Test Conditions are Being Used". October 20, 2014.

	ENGINEERING PRACTICE STUDY TITLE: MIL-STD-883, Method 1014 Survey of Industry to Determine Which Test Conditions are Being Used	
	October 20, 2014	
	STUDY PROJECT 5962-2014-011	
	FINAL REPORT	
	Study Conducted by DLA Land and Maritime - VAS	
1		

- The study outcome determines that most, if not all, of the Test Conditions existing in MIL-STD-883, method 1014 are being used.
- Additionally, method 1014 may not be simplified by moving any unused Test Conditions to an appendix in the method at this time.
- DLA Land and Maritime recommends that no changes be made to MIL-STD-883, method 1014, based on the results of the survey responses to this EP Study.

ESA performed a survey:

Hermeticity Test Method Survey (ESA-QES-ESCC-TN-003 PSWG). First a questionaire was prepared and delivered:

ESCC Fine Leak Test Questionnaire (2014)	10 ASA
Please select the choice from the boxes and fill with text the pink cells marked with "" (when applicable).	-03d
Use Alt+Enter to insert a new line into the same cell.	
Confidential	
Company name:	Date (dd/mm/yyyy):
Contact in the company (email address):	
m	
Leak testing related information	
1. Do you perform or manage leak testing according to MIL-STD-750F TM 1071, MIL-STD-883 TM1014 or other? If yes to 1071 and 1014, please use separate sheets for each; If no, go directly to question 8.)	
2. Is the activity performed in-house or subcontracted?	T
If subcontracted, - Which company is performing the work?	
- Do you require any type of formal qualification to the test-house (DLA lab suitability,	
ISO 17025,)?	
· · · · · · · · · · · · · · · · · · ·	
3. Fine leak testing	·
(please provide precise test method and revision used)	
3.2 Which test conditions or techniques do you apply? Specify below.	
a) Standard Helium leak test (H1, H2, A1, A2),	T
b) Cumulative Helium leak test (CH1, CH2),	
c) Radioisotope Kr85 (B1, G1, G2),	
d) Optical fine leak (L2, C5),	
e) Others (FTIR, Raman, copper test pattern, in-situ sensor,), specify below.	
3.3 On which kind of packages do you perform the fine leak testing (type and volume) ?	
4. How do you manage and control the test process:	
(Pressurization conditions determination, Pressurization control, Maximum dwell time control, Leak	
measurements and uncertainty calculation, Test control,)	

Questionnaire content:

- Do you perform leak test?
- The activity is done in-house or subcontracted?
- Which test conditions are applied?
- How the leak test process is managed?
- Leak failures: during manufacturing, customer returns,...
- > ..., etc

The questionnaire was delivered to different European entities: component manufacturers, assembly houses, and test labs:

3D PLUS	LEACH EUROPE (SARRALBE)	ORS ONEIDA RECHERCHE SERVICES	SAGEM	TESAT SPACECOM	OPTOI MICROELECTR ONICS
RUAG	IMT	STMICROELEC TRONICS	ALTER TECHNOLOGY TÜV NORD	ATMEL	TAS FRANCE
AEROFLEX GAISLER	LEWICKI	PEREGRINE UK	SERMA TECHNOLOGIES - HCM	TT SEMELAB	RF2M MICROWAVE
AXTAL GMBH	MICROSEMI IRELAND	RAKON FRANCE	SPUR ELECTRON	TYNDALL	RHE (CICOR)
HIREX ENGINEERING	OMIC	REL STPI	SYFER TECHNOLOGY LTD	UMS	TAS BELGIUM ETCA
MASER ENGINEERING	KVG QUARTZ CRYSTAL TECHNOLOGY	KONGSBERG NORSPACE AS	EADS ASTRIUM FRANCE	E2V	COMEPA
INFINEON TECHNOLOGIES A.G.	OPTOCAP	ROOD- MICROTEC	TAS ITALY	COBHAM MICROWAVE	

50% offered responses

Most of the companies of this survey confirmed the following:

- To use the previous versions of test methods MIL-STD-883H 1014 and MIL-STD-750D 1071.
- Previous version of test methods are sufficient to ensure good reliability in terms of hermiticity.
- > To have less than 1% of failure rate for hermeticity
- To have no field failure return due to hermeticity failure.
- To find the challenges to implement the new test method too demanding (impossible for complex packages).

The received answers show that the failure rates for hermeticity is very low (<1%) and no customer return is reported due to leak failures nor to component failures associated to a loss of hermeticity.

According to the surveyed companies, the current test methods are sufficient to insure good reliability in term of hermeticity. The satisfactory usage of the previous version associated with the difficulties to implement the new ones make them recommend to not migrate to the updated requirement indicated in the MIL-STD-750F method 1071.12 and MIL-STD-883 Method 1014.9 conditions.

4.- ESCC CURRENT POSITION

Noordwijk, 12th June 2015 ESCC Executive Public Notice (EEPN-2012-1-issue 4) To all ESCC manufacturers (qualified and unqualified) and customers of products procured in compliance with ESCC Generic Specifications No. 5000 Discrete Semiconductors and No. 5010 Discrete Microwave. MIL-STD-750F has been released 3rd of January 2012 with an implementation This standard is applicable to ESCC Generic Specifications No. 5000 and No. 5010. Among others, MIL-STD-750F includes numerous changes to the Hermetic Seal test method now in version 1071.9. The ESCC Executive and the ESCC Policy and Standards WG have concluded that the adoption of these TM changes by ESCC is not evident and requires further analysis. This (orgoing) analysis is sufficiently complex in nature and will also require manufacturer and customer feedback, such that it cannot be completed by the MIL-STD-750F implementation deadline. Notice is hereby provided that ESCC products subject to MIL-STD-750 TM Notice is nereby provided that ESCC products subject to MIL-STOP of MIL-1071 and successfully tested for hermeticity in accordance with MIL-STO 750E TM 1071.8 will be considered ESCC compliant until further notice subject to future ESCC decisions. Where relevant, ESCC manufacturers shall make reference to this Notice in their CoC and/or data package delivered to the customer. Ralf de Marino ESCC Executive Manager 2 (= 4 (= i - + Please address any queries to : ESCC Executive Secretariat E-mail: escc.executive@esa.int Post : ESCC Executive Secretariat (TEC-QES)

st : ESCC EXECT Postbus 299 - Kepleriaan 1 NL 2200 AG Noordwijk The Netherlands

Tel. +31-(0)71-565 4834 alt. 4283 Fax. +31-(0)71-565 6637 Evropeen Space Agenry Igence spatiale europeenee

ESTEC Keplerkon 1 - 2201 AZ Nosedwijk - The Netherlands

ESCC products subject to MIL-STD-750 TM 1071 and successfully tested for hermeticity in accordance with MIL-STD-750E TM1071.8 will be considered ESCC compliant until further notice subject to future ESCC decisions.

5.- ONGOING ACTIVITIES / FURTHER WORKS

1. Technical assessment

15

21st Components for Military & Space Electronics Conference CMSE 2017

Test Methodology	Advantages	Drawbacks
Classical He Leak Test	Process standard.	Not appropriate on devices with glass, polymers, epoxies,
	Well-known technique.	He sorption characterization.
	Various equipment suppliers.	Low sensitivity for very small cavity devices.
	Available test methods.	
Cumulative Helium Leak Detection	Simultaneous Gross and Fine leak test (in the same test process).	Not valid for devices with He sorption, and He sorption management.
	Higher sensitivity level than standard He test.	Limited equipment suppliers (Two identified)
	Available test methods.	Not very efficient test cycle time.
Radioisotope ⁸⁵ Kr	Can perform simultaneous Gross and Fine leak test in the same test process.	Handling radioactive elements which have some safety concern and severe installation rules, especially in Europe. Equipment not European certified.
	Fast test cycle time.	⁸⁵ Kr tested Leak failures became radioactive material. Must be handled under special procedures.
	High test sensitiveness reaching detectability levels 1×10 ⁻¹² atm.cm ³ /s and better.	Only one equipment supplier: "ISOVAC", located in USA. Limited service outside USA.
	Minimal gas absorption to glass and other materials, but still need to evaluate for very low leaks levels.	Only one recognized equipment installed in Europe.
	Available test methods	Limited supplier sources of ⁸⁵ Kr gas and also under export-import regulations.
		Is not possible to use this test when the devices have not metal lid or flexible
OLT	No pre-bombing requirements	case.
	Can perform simultaneous Gross and Fine leak test in the same test	Net demonstrated and shifting below leads built 4, 40°11 atms and
	process. Is adequate to perform Leak test on packages with belium absorbing /	Only one equipment supplier, located in USA, and limited service outside
	emitting materials.	USA
	The technique allows the leak test when the devices are already mounted in the board even after application of conformal coating layers. The test can be performed in automatic mode, reducing cost and	
	improving the test process.	
	Available test methods	
HSHLD	Fine and Gross Leak detection	Not valid for devices with He sorption, and He sorption management.
	Minimum Fine Leak detection: < 1.0x10 ⁻¹² atm.cm ³ /s He.	Only one equipment supplier.
	Spectrometer mass range 1-100 amu. Allowing the use of several gasses.	Technique new. Pending to demonstrate performance.
	2 point Linear Calibration (as low as 1.0x10 ⁻¹¹ atm.cm ³ /s He)	
	Faster cycle time than standard He leak test	
Q-factor monitoring	No surface sorption	No available test method.
Micro Pirani	High theoretical sensitivity	Need of pre-calibration before leak measurements.
		Not available dedicated test equipment.
		Complex implementation on existing products.
FTIR spectroscopy	No surface sorption	No available test method
Raman Spectroscopy	High theoretical sensitivity	Need of calibration against other technique.
		Not available dedicated test equipment, lab instruments used.
		Complex lest set-up. Requirements on specific device packaging properties: infrared transparent
		, etc.

2. Inter-comparative study

- Test samples: 70 devices, with small cavity devices, from 4 different qualified sources and with various leak rates will be used as test vehicles.
- Test conditions: He, CHLD, ⁸⁵Kr and HSHLD.
- Laboratories: ALTER, INFINCON, Leybold, ORS, ISOVAC,...(pending to confirm the final list)
- Test process management: fixed test conditions and under ISO 17025 framework.

3. ESCC leak test method

- The subject was discussed by a dedicated ad hoc CTB-PSWG working group.
- A decision was made to create an European ESCC leak test requirement document.
- The basic requirements will be based on the old requirements and failure criteria with some corrections.

THE NEW TIGHTER HERMETICITY LEAK TEST REQUIREMENTS - EUROPEAN OVERVIEW.

SUMMARY AND CONCLUSIONS:

19

- 1. Each test technique has its own advantages and drawbacks and are somehow complementary, although the He and ⁸⁵Kr look like the most versatile tools.
- 2. The correlation levels are still under concern and some additional investigation must be performed to understand the differences.
- 3. The introduced tighter requirements seems not justified as a general rule, although could be required in specific cases.
- 4. The new In-situ leak test techniques, based on different MEMS structures, and other new techniques offer promising characteristics but further work need to be done before using them as standard test methods.

<u>ACKNOWLEDGMENT:</u> "This work has been partially developed with the European Space Agency support and under the contract (ESA Contract: 400011075/15/NL/PS): Hermeticity Testing Procedures".

THANK YOU FOR YOUR ATTENTION

Gonzalo Fernández

C/ Tomás Alba Édison, 4 41092 Sevilla Spain Phone + 34 95 446 70 50 Email: gonzalo.fernandez@altertechnology.com www.altertechnology.com

¿Any question?

ALTER TECHNOLOGY GROUP: with 30 years experience in the space sector.

