

Ceramic and Metal Repackaging of Plastic Encapsulated Microcircuits for Hermetic Solutions

Topic: Alternate Grade Parts for use in Harsh Environments

Presented by Dr. Erick M. Spory

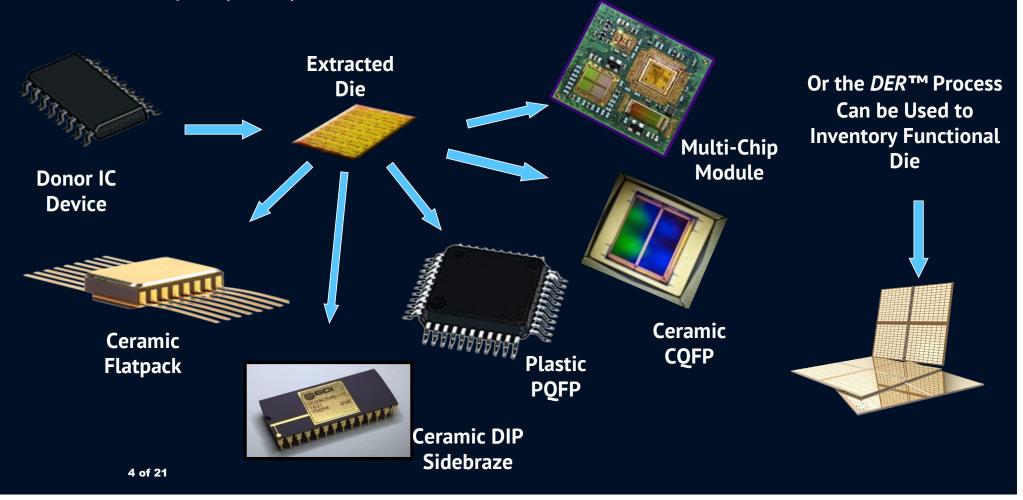
CMSE 2023 – Los Angeles April 27, 2023

Microcircuit Component and Circuit Card Design and Assembly Manufacturer

www.GCI-Global.com

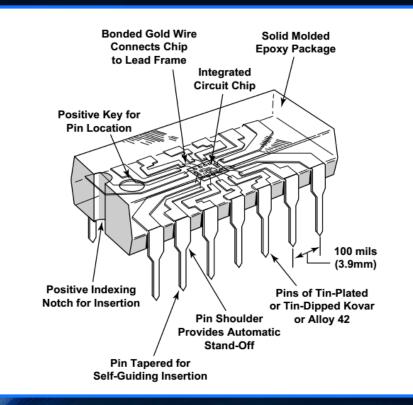
Introduction To Global Circuit Innovations

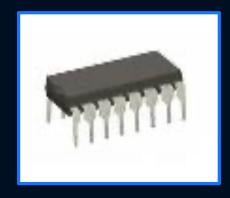
- Founded 2006 in Colorado Springs, Colorado - 27 Employees
- Established design and manufacturing engineering solutions house for Industrial and DoD electronics in extreme environments, rugged COTS replacements, and electronics obsolescence solutions
- Thorough understanding of Integrated Circuit (IC) device physics, fabrication processes, design, and potential failure mechanisms
- GCI currently holds 20 patents, with 2 pending



GCI's **DER**[™] and **DEER**[™] Technologies and Benefits

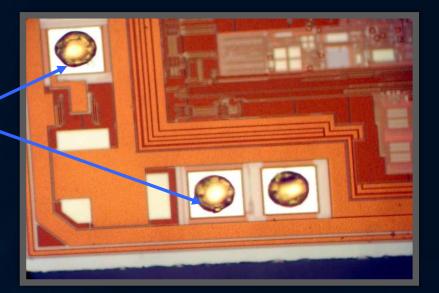
- DER[™] Die Extraction and Re-Assembly: Removal of Die from either Plastic or Ceramic Package for Re-Packaging within any other Package.
- **DEER™ DER™** Process, but with Gold Ball Remnant Removal Followed by ENEPIG Die Pad Processing (Electroless Nickel, Electroless Palladium, and Immersion Gold Plating)
- Increased High-Temperature IC Reliability (150° C 250° C Exposure) due to Ceramic Package Integrity and Removal of Gold Bond to Aluminum Die Pad Interface
- Increased Operating Temperatures due to Greater Heat Transfer Coefficient for Ceramic Package vs. Plastic Package
- Obsolescence Solutions by Increasing Inventory Selection of Potential Donor Stock (larger Package Selection Possibilities of Desired Component
- Available Die Inventory for Multi-Chip Modules or Prototype Requirements

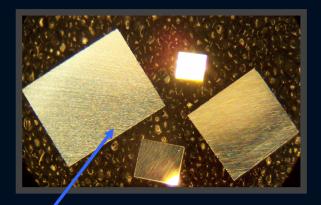

DER[™]: Die Extraction And Re-Assembly


If one Package Footprint is Obsolete, but the Die can still be Located in Another Package Footprint, or the Die is in an Undesirable Package, the Die can be Extracted and Re-assembled into the Desired Footprint (*DER*[™])

Typical Integrated Circuit (IC) Architecture

The Various Elements of a Plastic Packaged IC Include: the Die, Leadframe, Leads, and Plastic Encapsulation




GCI's **DER**[™] Technology Up Close

GCI's Extraction Technology Provides Very Clean Front-Side and Back-Side Surfaces **DER™** Relies on Chemical and Mechanical Processes Which Are No More Aggressive Than Those Used During Wafer Fabrication

No Inadvertent Etching of Bond Pads

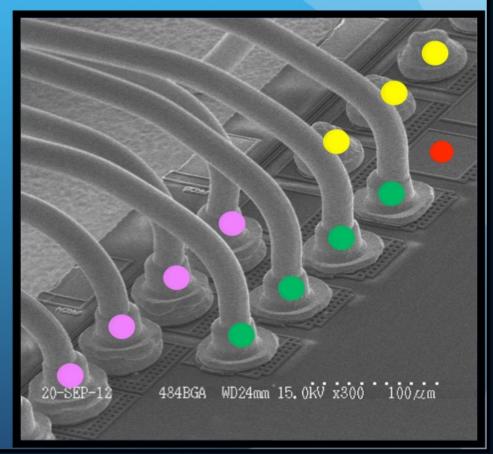
Die Surface Free of Contaminants

Die Back-Side Surface Free of Contaminants and Returned to Original Mirror Finish

SEM Image of Compound Single Bonds

New Bond Mapping Options Available for Same Die

Multiple Chip Configurations for the Same Die Can be Achieved with Optional Bondouts


Note Four (4) Bond Options:

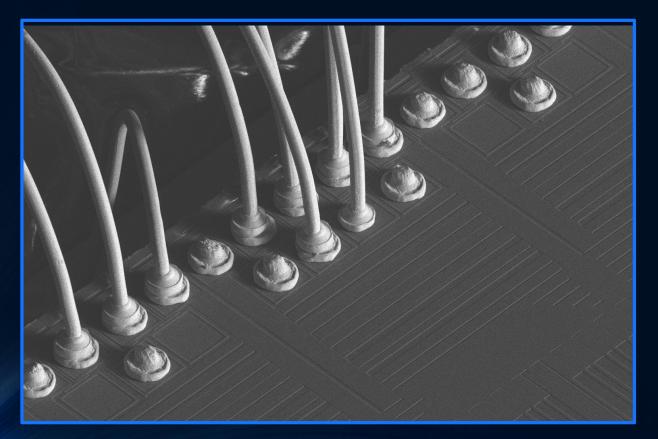
Originally Non-Bonded Pad Still Not Bonded

Originally Non-Bonded Pad Now Bonded

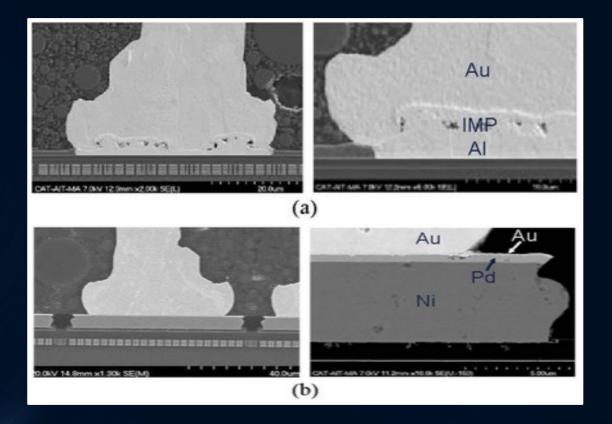
Previously Bonded Pad Now Not Bonded

Previously Bonded Pad With a New Compound Bond

GCI's MIL-STD-883 Qualification

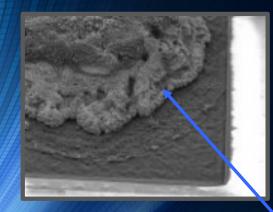

								SMD			QCI		
								Military	100%		Group C		Ext.
	Original	New	Counterfeit	Variability	Reliability		HERM	3-Т	Screen/	QCI	1K Hour	QCI	2K Hour
F-16 P/N (GEN#)	Package	Package	Analysis	Analysis	Study	DER	ASSY	Electrical	Group A	Group B	Life	Group D	Life
	28-pin	Ceramic-	Authorized	Criteria labs	Criteria labs			Criteria labs	C criteria labs	Criteria labs	C criteria labs	Criteria labs	Criteria labs
AT28C64B	SOIC	28 Pin	Distributor										
Memory Device	Plastic	Sidebraze	- Franchised	PASS	PASS	100%	100%	PASS	PASS	PASS	PASS	PASS	PASS
			Authorized	Criteria labs	Criteria labs			Criteria labs	C criteria labs	Criteria labs	Criteria labs	Criteria labs	Criteria labs
XC4013XL	160-pin		Distributor										
Field Programmable	TQFP	Ceramic-	-										
Gate Array	Plastic	144 CQFP	Franchised	PASS	PASS	100%	100%	PASS	PASS	PASS	PASS	N/A	PASS

• GCI's *DER*[™] Process passed "V" Level Testing per MIL-PRF-38535 and MIL-STD-883 TM 5005 QCI


- QCI Lifetest Extended from 1,000 hours Beyond 4,000 hours
- Results Demonstrate GCI's *DER*[™] Process is Highly Reliable in Accordance with MIL-PRF-3853 and MIL-STD-883 Test Method 5005
- U.S. Department of Defense (DoD) MIL-STD 883 Testing
 - Nominal MIL-STD-883 Life Test Requirement of 1000 hours extended to 4000 hours at 125°C
 - IC Burn-In and Life Test Boards Designed for Maximum I/O Signal Level, I/O Loads and VDD Supply Voltage
- *XC4013XL FPGA: Solder Seal Solution with Brazed Sealing Ring Superior to Low-Temperature or High-Temperature Sealing Glass (for Hermetic Lid Sealing)

GCI's **DER™** Technology Up Close - ReBonding

DER[™] - Conventional Process Leaves Gold Ball Remnant in Place for Subsequent Compound Bonding


DEER™ Bond Intermetallic Formation

(a) Gold Ball Bond on an Aluminum Pad showing Undesired Inter-metallics.(b) Gold Ball Bond on an ENEPIG Pad showing no Inter-metallics.

GCI's **DEER**[™] Process Development

- Pad Re-Conditioning Using Gold Ball Removal Followed by *ENEPIG* (*Electroless Nickel, Electroless Palladium, Immersion Gold*) Plating
 - Potential Original Poor Ball Bond Quality/Reliability is Removed
 - Subsequent Bonding is Non-Compound with Highly Consistent and Reliable Bond Pull Strength
 - New Bond Pad Surface *Eliminates* Possibility of Kirkendall Voiding with Gold Bond Wire at Operating Temperatures Above 150°C

General Appearance of Kirkendall or Horsting Voiding at Bond Pad Location

Specifically, at Gold Ball to Aluminum Bond Pad Interface, the following Undesired Intermetallic Compounds can be formed:

 Au_5Al_2 , Au_4Al , Au_2Al , $AuAl_2$

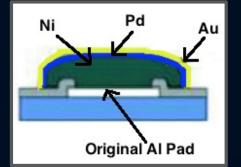
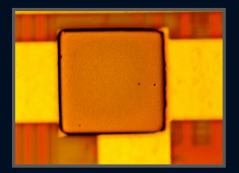
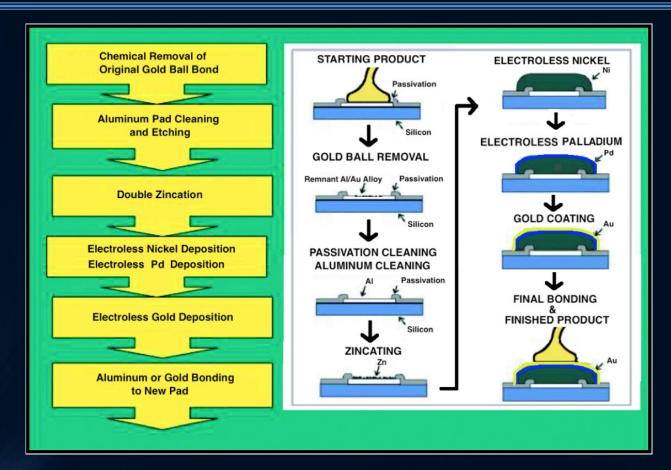
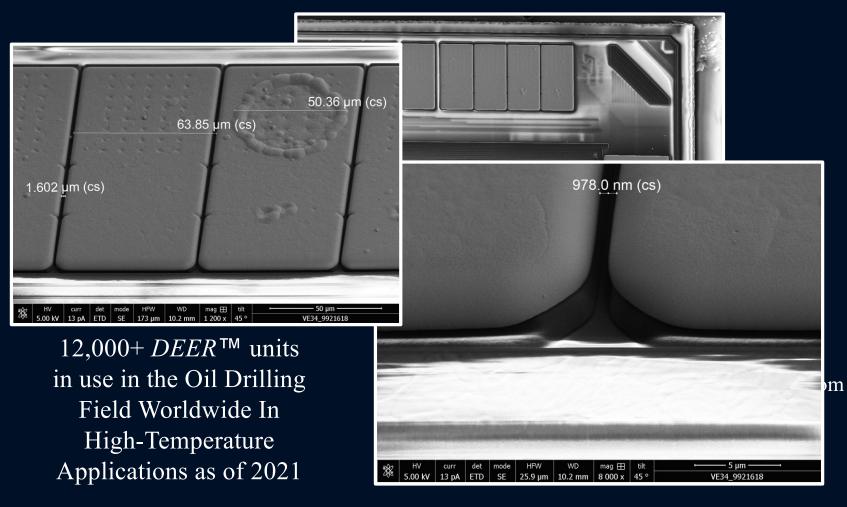




Illustration of *ENEPIG* Pad Plating

Optical Photo of Actual ENEPIG Plated Die Pad

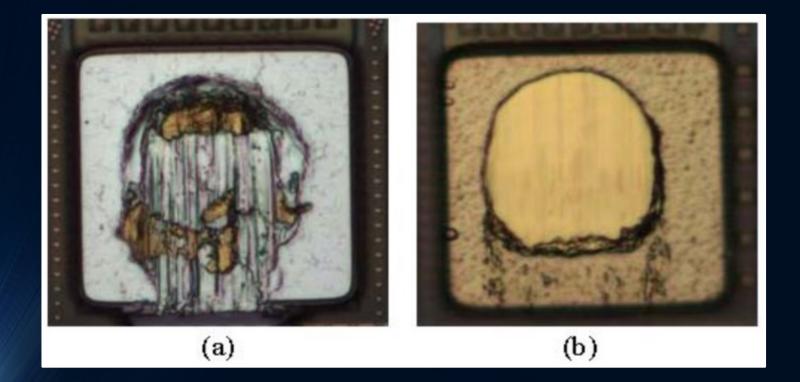
Pad Re-Plating (**DEER**^m) – High-Temperature Applications

Process Flow for Pad Re-Conditioning Following Extraction Targeted Thicknesses: 4 μm Ni, 0.25 μm Pd, 0.04 μm Au

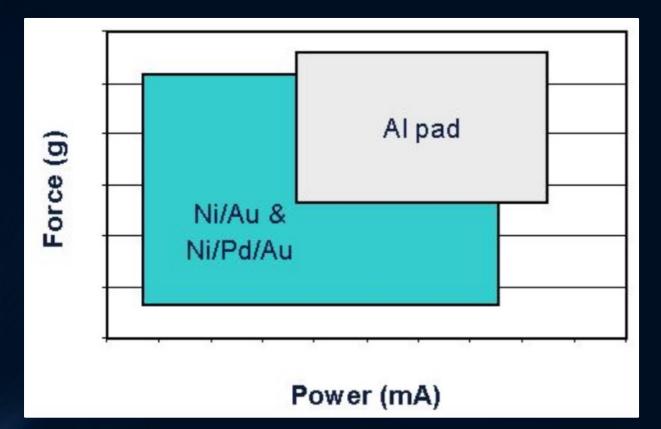

DEER™ Gold Ball Removal, Pad Re-Plating with Electroless Ni/Pd/Au Process (**ENEPIG**)

Aluminum Pad Reconditioning for an Extracted Die (Target Total Plate Up is 4 – 5 μm)

DEER[™] Gold Ball Removal, with *ENEPIG* Pad Re-Plating



DEER[™] Gold Ball Removal, with *ENEPIG* Pad Re-Plating

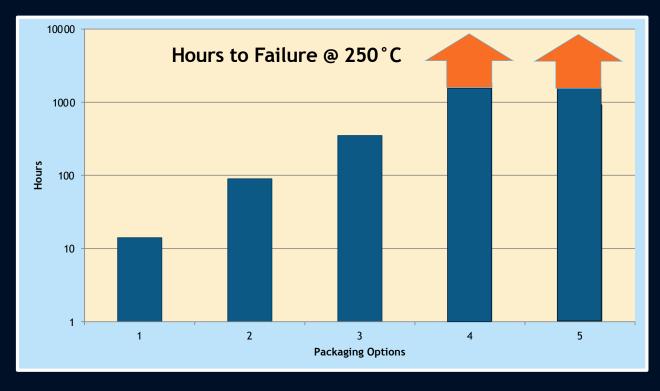

Extraction Lab and Automated ENEPIG Plating Process

DEER™ Bond Shear Results

(a) Aluminum Bond Pad after Gold Ball Bonding and Shear Test(b) ENEPIG Plated Bond Pad after Gold Ball Bonding and Shear Test.

DEER™ Bond Process Window Results

Additional Benefit of **DEER**[™] Technology - Comparison of Wire Bond Process Parameters for Aluminum and ENEPIG Pads.



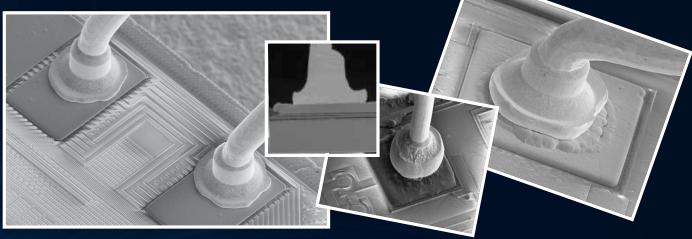
Ni/Pd/Au Pad *DEER*™ Re-Plating Performance at +250°C

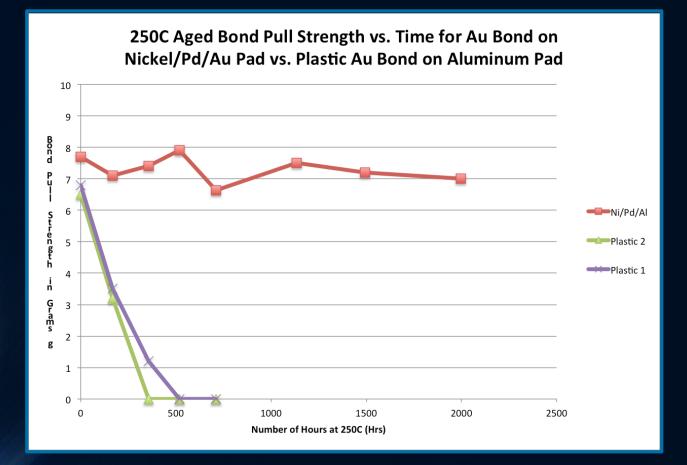
(25hr)

(95hr)

(600hr)

Packaging Option Key:


- 1 Standard Plastic
- 2 Extraction, Standard Ceramic Assembly (DER ")
- 3 Extraction, Hi-Temp Ceramic Assembly (DER^m)
- 4 Extraction, Ni/Pd/Au Process, Standard Ceramic Assembly (DEER **) (+2500hr)
- 5 Extraction, Ni/Pd/Au Process, Hi-Temp Ceramic Assembly (DEER **) (+6000hr)
- 18 of 21


Ni/Pd/Au Pad **DEER**[™] Performance at 250°C

Device as Received:		Avg. Bond <u>Pull Strength</u> 7.1549	Std. <u>Dev</u> . 1.03g	Mean- <u>3 SD</u> 4.06g	Original Plastic Control Unit Mean:	
Devi	ce After Pad Re-Conditioning:					
T=	o Hr	13.302g	1.52g	8.74g	6.8g	
T=	168 Hr (250°C)	12.650g	1.26g	8.89g	3.2g	
T=	1000 Hr (250°C)	11.540 g	o.90g	8.5og	1.0g	
T=	2000 Hr (250°C)	10.913g	o.76g	8.65g	o.og	

Data reflects 16 data points for each condition listed above

GCI's Ni/Pd/Au Pad **DEER™** Re-Plating Performance at 250°C

Bond Pull Strength vs. Time at 250°C for *ENEPIG* Pad Plating

Contact Information

Erick Spory, Ph.D. President & CTO Erick.Spory@GCI-Global.com Office: +1 (719) 573-6777 x104 Cell: +1 (719) 649-0947

www.GCI-Global.com

