
Quantic[®] Paktron

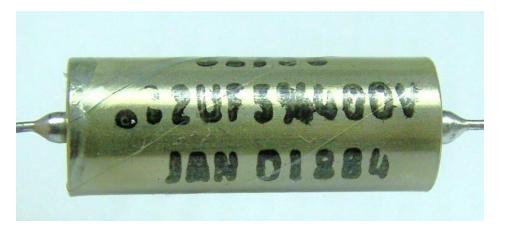
CMSE 2023 Technical Session: Inherently Robust Film Capacitor Solutions for Embedded Power Applications in Military and Space

Zach Kilsmith Director of Engineering

Zach Kilsmith

- Director of Engineering for Quantic Paktron.
- B.S. degree in Mechanical Engineering from Worcester Polytechnic Institute in central Massachusetts where I still reside.
- After graduation I spent several years working as an applications engineer for switchmode power supply manufacturers
- In 2017 I joined Quantic Paktron.
- In my off-time I enjoy spending time with my wonderful wife and children and tinkering with things of all sorts.

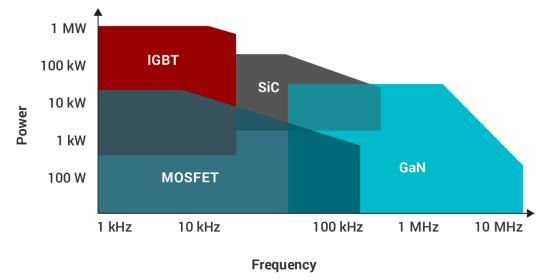
Making the Argument: Why *should* COTS film capacitors be considered for mission-critical applications?

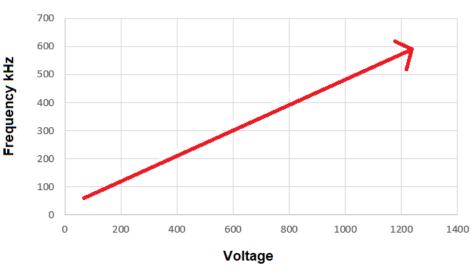

Military Specification	Generic Designator	Description	Additional Notes
<u>MIL-PRF-83421</u>	CRH	Fixed, Metallized Plastic Film	Axially leaded, hermetically sealed, polypropylene and PPS dielectric options
<u>MIL-PRF-87217</u>	CHS	Fixed, Supermetallized Plastic Film (OBSOLETE)	No active manufacturers for CHS as of 2023

NASA Parts Selection list also references the above

This is not a cost-based argument, it is all about performance!

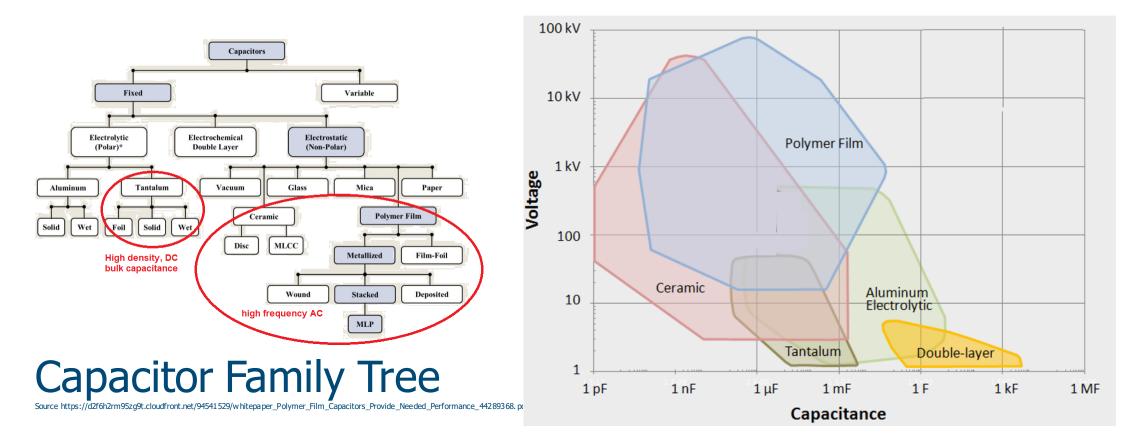
Disadvantages of MIL-PRF-83421


- Specifies only axially leaded capacitors (no DIP, SMD, CHIP)
- Must be hermetically sealed to meet standard
- Max operating voltage specified to 400VDC
- Max available temperature of 125C (with derating) Only available dielectric for 125C is PPS, not self-healing


MIL-PRF083421 "CRH" style capacitor with 1984 date code source of photograph https://www.ebay.com/itm/184461245894

Trends in High Reliability Power Electronics

Higher frequency: smaller magnetics, less weight (SWaP) GaN, SiC can have better rad stability and efficiency over Si gate drive voltage and frequency domain must be considered


source https://www.ti.com/technologies/gallium-nitride.html

Trends in Power Electronics

Quantic[®] Paktron

Are There Mil-Spec Alternatives to MIL-PRF-83421 Film Capacitors?

Are There Mil-Spec alternatives to MIL-PRF-83421 Film Capacitors?

Mil-PRF-49470 style ceramic capacitors source of photograph https://www.quanticutc.com/categories/military

Multilayer Ceramics have displaced film capacitors in many military, space and mission critical applications in recent years, but there are limitations to MLCC technology

Military Specification	Generic Designat or	Description
MIL-PRF-20	CCR	Fixed, Ceramic, Temperature Compensating, Established Reliability Radial Lead or Axial Lead
MIL-PRF-123	CKS	Fixed, Ceramic, Space Level Radial Lead, Axial Lead, Chip or DIP
MIL-PRF-39014	CKR	Fixed, Ceramic, Established Reliability Radial Lead, Axial Lead or DIP
MIL-PRF-55681	CDR	Fixed, Ceramic, Chip, Established Reliability
<u>MIL-PRF-49467</u>	HV	Fixed, Ceramic, Multilayer, High Voltage, General Purpose
<u>MIL-PRF-49470</u>	PS	Fixed, Ceramic Dielectric, Switch Mode Power Supply Stacked Chips with Lead Frames for Level 2 Applications
DSCC-DWG-87106		Fixed, Ceramic, Switch Mode Power Supply Stacked Chips with Lead Frames for Level 3 Applications

Source: https://nepp.nasa.gov/npsl/Capacitors/Cer_type.htm

Ceramic Capacitors: Advantages and disadvantages

Advantages

- Vast selection of mechanical footprints, styles, terminations
- Vast selection of voltage ratings, capacitance values
- Very high power density (for electrostatic type, high frequency domain)
- Wide selection of dielectric substrate allows for optimal choosing of dielectric constant (K), temperature coefficient, and Q factor (D.F.) depending on application
 - Example X7R Vs. COG
- Ultra High temperature ratings 200C +

Disadvantages

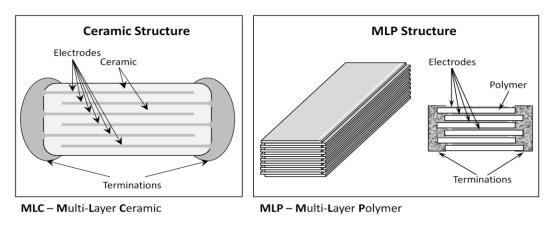
- Mechanically brittle, prone to cracking

 Cracking can be caused by temperature shock, handling during manufacturing, reflow soldering
 - High amplitude voltage can cause a piezo effect which leads to cracking
- Short mode failure
 - Cracking leads to failure, which is generally short mode, can cause burning or arcing in low impedance applications
- DC Bias effect on capacitance (substrate dependent)
- Use based aging, metal migration, temperature coefficient can be significant (depending on substrate and electrode type)

Multilayer Polymer Capacitor: A Stable, Robust Alternative to MLCC

Angstor® Capacitor • Capstick® Capacitor

SMD Leadframe and EIA chip styles available X7R or COG "like" electrical properties depending on film

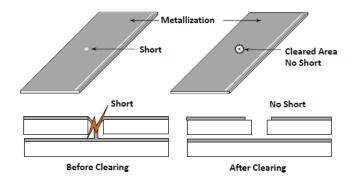

Voltage Range

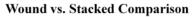
50-500VDC 630-1200VDC (Pending) Cap Range .1uF to 20uF standard

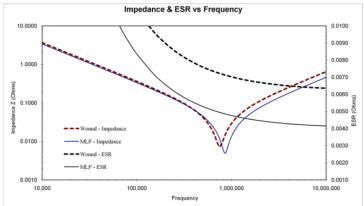
- **Highest ripple current** x C*V ratings in the industry
- Ultra low D.F,
- Self-Healing capability, open failure mode
- CTE Match to FR4
- -55C to +150C operating temperature range
- Ultra low ESR/ESL
- Low Mass <25% of equivalent MLCC
- Low losses at high frequency
- Excellent for resonant circuits
- High dv/dt
- Efficient size
- Rugged construction
- Automotive AEC-Q200 (Pending)
- Made in U.S.A.

Design Advantages

Multilayer Polymer (MLP) Capacitors are structurally similar to MLCC






Advantages of MLP

- High frequency, lower ESL/ESR due to mechanical structure
- Self-healing, mechanically robust design due to polymer film construction
- Lightweight <25% of equivalent ceramic

Self-Healing

6

Comparison of X7R Vs polyester base MLP technology

E*1 (441 D)

nology	TYPICAL CHARACTERISTICS The following graphs contrast important characteristics of MLP Capsticks to MLC ceramic units in typical, dynamic converter conditions. The electrical stability of the MLP capacitor is clear.		
	ESR vs. Frequency	120 Hz ESR vs. Temperature	
	ESR (milliohms)	10 ESR (ohms) 	
X7R Ceramic (MLC)		6	
Cap drops 40% at 100 volts bias	10 Argentick X7R	2	
DF increases with AC voltage	1 100 Hz 1 KHz 10 KHz 100 KHz 1 MHz 10 MHz	-55 -40 -20 0 25 45 65 85 105 125	
Body is ceramic which cracks	Frequency	Temperature (°C)	
DF increases at low temperature	Dissipation Factor vs Vrms	Capacitance vs DC Bias	
Cap drops per decade hour	%DF	% Cap. Change	
Ceramic body cracks easily	6.0 Capstick X7R Z5U	-20.00	
Thick film electrodes fail short	4.0	-40.00	
Piezoelectric voltage sensitive	2.0 -	-60.00	
Low ESR		-100.00	
Dissipation Factor $\leq 2.5\%$	0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 Vrms (AC Volts @ 1KHz)	0 50 100 150 200 250 300 350 400 DC Bias (volts)	

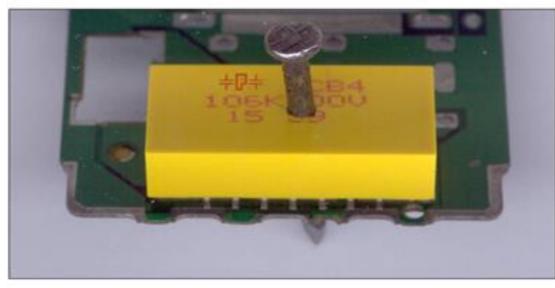
Multilayer Polymer Film (MLP)	X7R Ceramic (MLC) Cap drops 40% at 100 volts bias	
✔ Stable under voltage		
✔ Stable under AC voltage	DF increases with AC voltage	
 Chip is plastic with good TCE 	Body is ceramic which cracks	
✓ Stable over temperature	DF increases at low temperature	
✔ No aging mechanism	Cap drops per decade hour	
 Resilient under thermal shock 	Ceramic body cracks easily	
 Self-clearing thin electrodes 	Thick film electrodes fail short	
✓ Stable under mechanical stress	Piezoelectric voltage sensitive	
✓ Ultra Low ESR	Low ESR	
✓ Dissipation Factor $\leq 1\%$	Dissipation Factor $\leq 2.5\%$	

88 8418

.

Quantic[®] Paktron

Space and Military Heritage



- MR0: 2005
- Space Shuttle Discovery OMM 2002
- LEO, small sat heritage
- Extensive use in Tier 2 airborne military embedded power supplies
- Used on FADEC Platforms

Quantic Paktron

"Tough As Nails" Technology

Quantic Paktron

Q & A

Quantic Paktron

Thank You!

Zach Kilsmith Director of Business Development and Engineering zkilsmith@quanticpaktron.com

