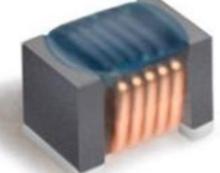


Designing and Application Considerations for Space Grade Ferrite Beads

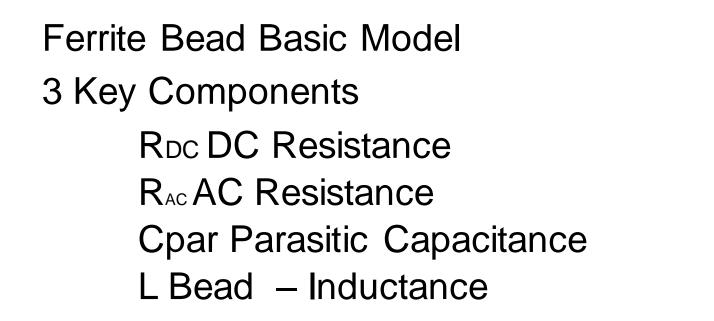
INRCORE FAMILY OF BRANDS

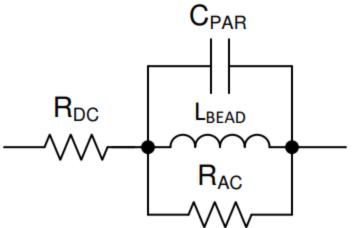
World Class Designer and Manufacturer of Catalog and Custom Passive Components



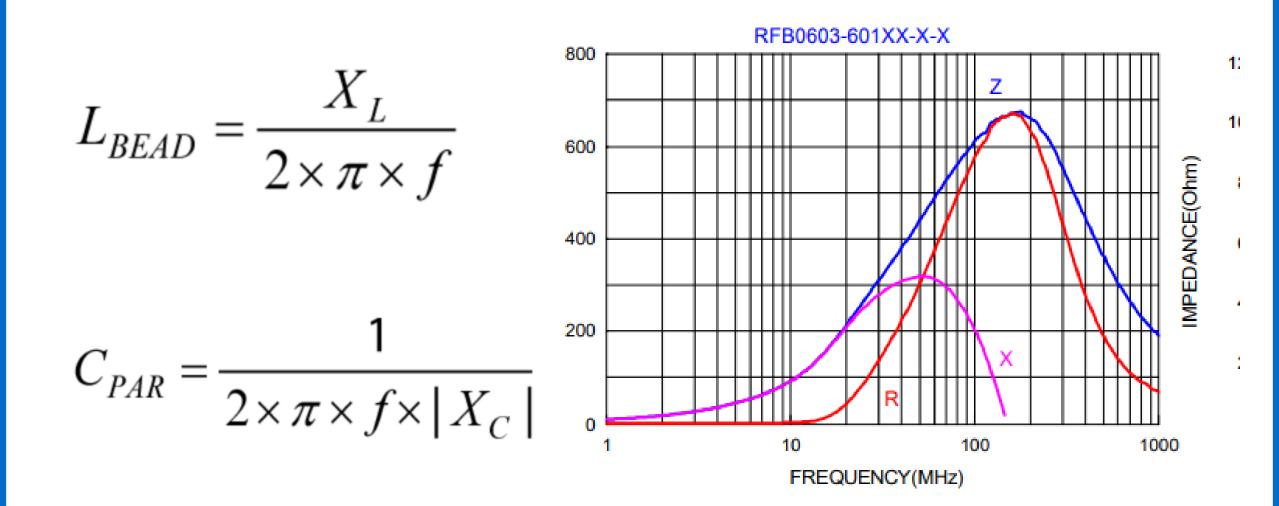
Understanding Ferrite Beads

- A bead is one method used to attenuate high-frequency electromagnetic interference (EMI) in a circuit.
- It works like a low pass filter that allows only low frequency signals to pass through a circuit and eliminates the high-frequency.
 - It is resistive over the desired frequency range
 - Dissipates the EMI energy in the form of heat
- They are widely used on all applications from cells phones to satellites.
- Methods to attenuate EMI:
 - At the Panel/Box Level
 - Solder in Filters
 - Bolt in Filters
 - Board Level
 - Wirewound
 - Traditional Chip (Multilayer)

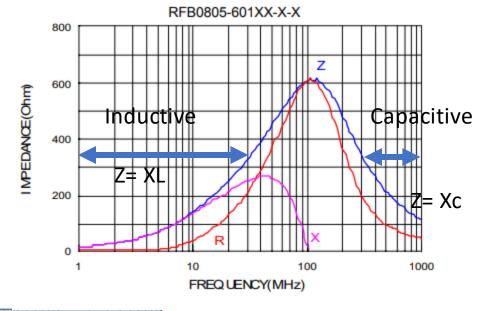


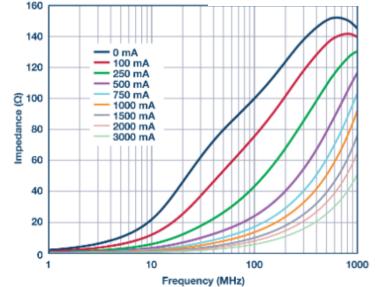

Ferrite Beads DOs and DON'Ts

- Care must be taken on selection
 - DO NOT
 - Use Ferrite Beads to control ripple
 - Attempt to Bridge Ground Planes with Beads (different potential)
 - Exception Analog and Digital power planes (same potential)
 - Use to control AC Power Lines, place a bypass cap
 - At Low Frequencies, Beads can act as inductors!
 - Ferrite Beads are not inductors (they dissipate EMI in the form of heat), not store energy (inductor)
 - DO
 - Be careful on Cap selection you do not resonate
 - Be Mindful of L and C parasitics
 - Be Aware that Performance Changes over Current
 - Install Bead inline with circuitry to insulate DC/DC Converter and Analog lines


Helpful Equations

Inductive Component becomes dominant at lower frequencies Cpar becomes dominant at or above SRF





Bead Selection

- Select a bead to have high impedance at the noise frequency and low impedance at the "pass frequency"
- Choose a bead based on saturation current.
 - Attenuation starts to occur well before max current
 - Choose a bead based on keeping impedance high at peak currents
 - Not all bead suppliers publish this data, but it can be provided

FERRITE BEADS FOR SPACE AND HIREL

- QPL to DLA's DSCC 03024
- MIL-STD-981 Option (SRFB)
- Used for suppressing and filtering EM interference
- 1 KHz to 100 MHz
- Custom values and sizes

FERRITE BEADS PN 03024 VS SRFB (MIL STD 981) "Group A" Built the same just tested differently

DWG 03024

"GROUR A"

Thermal Shock 5 Cycle

Visual and Mechanical

Material Verification

Inspection

DC Resistance

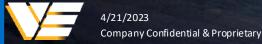
Impedance

Examination

Outgassing

Material Verification Teminations/Body

MIL STD 981


	"GROUP A"	
QTY	Inspection	QTY
.00%	Thermal Shock 25 Cycle)	100%
.00%	DC Resistance	100%
.00%	Impedance	100%
.00%	Visual and Mechanical Examination	100%
Pcs	Burnin 96 hrs at +125°C	100%
Pcs	Radiographic Inspection:	100%
		100%
	IR	100%
and the	Electrical Validation	100% 9

FERRITE BEADS PN 03024 VS SRFB (MIL STD 981) "Group B" Built the same just tested differently

0	"GROUP B"			"GROUP B"	
SubGrp	Inspection	QT Y	SubGrp	Inspection	QTY
1	Resistance to Solvents	6 PCS		Resistance to Solvents	2
	Solderability	8 PCS	I. I.	Solderability	2
	Test DCR & impedance			Test DCR & impedance	2
	Resistance to Soldering Heat	4 PCS		Resistance to Soldering Heat	2
	Test DCR & impedance			Sinusoid Vibe	
IV	Test DCR Terminal Strength	4		Shock 1500G Visual	2 2
	Test DCR	PCS	П	Life 2000 hours	2
V	Current Carrying Capacity	8 PCS	I	Solderability	2
		30			
		pcs			
		tot al			

note : Grp B test units are taken directly from Grp A lot after all test are completed

FERRITE BEADS PN 03024 VS SRFB (MIL STD 981) "Group C" Built the same just tested differently

SubGrp	time	"GROUP C"	
	lead	Inspection	QTY
		Test DCR & impedance	
		Low Temperature Operation	16 Pcs
	7 wks	Test DCR & impedance	IN PUS
1	Life (1000Hours)		
	Test DCR & impedance		
	7	Thermal Vacuum (separate Samples)	8 Pcs
· · · ·	Test DCR & impedance		
		Test DCR & impedance	
Ш	1	Bending	6 Pcs
		Test DCR & impedance	
	Test impedance		
	4 wks	Vibration	4 Pcs
	4 WKS	Shock	4 PCS
	Test impedance		
		Test impedance	States
		Salt Spray	
IV	4 wks	Test impedance	4 Pcs
		Thermal Shock(100 cycle)	
	Test impedance		
	Test impedance		
	Moisture Resistance	-	
V	V 3 wks	Test impedance	4 Pcs
		Thermal Shock (5 cycle)	and the second second
	Current Carrying Capacity		
VI	1	Insulation Resistance	4 Pcs
			46 pcs
			total

Available resources

- RFB Designer Kit
- New Values being added to SRFB offering
 - 0402
 - Other values and higher ratings
- Current Rating Curves (Q3 2023)
- VE Engineering and Tech Support

RF & Microwave

- ✓ Air Cores, Chip Inductors & Wideband Transformers
- Achieving desired electrical characteristics up to 3 GHz+
- ✓ QPL, Space, COTS+ and custom solutions
- Gullwing, surface mount, thru-hole, radial & flying leaded mounting options available
- Line-to-line configuration and traditional transformer topology offered

Power Magnetics

- 🐓 High Power Density
- Low Core & Copper Losses
- Efficient thermal management
- Power levels to 10 kW+, Voltages to 40 kV+
- ✓ Magnetics for GaN Applications & traditional power supplies
- ✓ Temperature range from -55℃ to 200℃+

Pulse & Data Bus

- ✓ QPL: MIL-PRF-21038/27
- ✓ MIL-STD-1553 (single and dual/redundant)
- ✓ Military, Commercial and Space grade options available
- V Custom and SCD

Custom

- ✓ Build to Print / Design to Concept
- VIL-STD-981 / MIL-PRF-27
- SCC Compliant / EEE-INST-002
- 🖌 🗸 Quick Prototypes Shipped Direct
- 🖌 SCD Creation Assistance

FARN MORE

LEARN MORE

VANGUARD ELECTRONICS

High Reliability Inductors & Transformers

Contact Vanguard to engineer the solutions to your current and future challenges

Scott Harris - sharris@ve1.com Sales Director - 714.316.4842

> For more information about Vanguard products and capabilities visit us at: www.VE1.com

