#### **Active Parts – Larry Harzstark**



#### **Executive Summary**

- The management of PMP (Parts Material Process) activities at the contractors is a critical task that requires personnel with expertise in many areas
- PMP tasks establish the heart of the system reliability based upon part selection, procurement and testing
- The military parts are divided into many classes for different applications
- A major part of PMP management is to understand the nuances of the classes and select the "best" part for the application and balance reliability, cost and schedule for the program

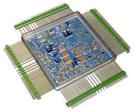
PMP management is critical to ensure long term system reliability



#### Overview

| Device Flows    | Defines the specific tests and inspections a commodity type will be<br>exposed to based on the quality level<br>Governs the test routine based on specific technologies and failure<br>mechanisms to provide a reliable part for military and space applications                                                                                                                                                                                   |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| New technology  | New technology (part, material or process) must be completely evaluated<br>(characterized and qualified) for space utilization<br>Important because previous failures occurred because parts were not<br>properly characterized or their failure mechanisms understood                                                                                                                                                                             |
| Lessons learned | Space or Military level devices requirements are more stringent than lower<br>quality level devices<br>Space level devices require tighter process controls at the wafer<br>fabrication process than lower quality level devices<br>Commercial parts may not be capable of successfully meeting space<br>requirements<br>Important because space requirements are unique and drives<br>characteristics (design, construction and testing) of parts |




#### Overview

| Purpose                            | Provide an overview of Parts, Materials and Processes (PMP) concepts for active device types and explain the importance of the approach                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Terminology                        | Active Parts—microelectronic/semiconductor electrical or electronic piece<br>parts<br>Important to understand the distinction between device types because<br>requirements are based on type                                                                                                                                                                                                                                                                                                              |
| Military Specifications            | Component requirements (design, construction, quality and reliability)<br>are governed by military specifications<br>Mil specs define multiple levels of quality assurance invoking specific<br>controls and testing requirements                                                                                                                                                                                                                                                                         |
| <b>Overall Manufacturing Flows</b> | <ul> <li>Wafer fabrication – semiconductor process using masks or blueprints<br/>to build device in layers</li> <li>Wafer probe test – lowest level of electrical test to validate<br/>functionality of devices and weed-out non-working devices</li> <li>Packaging – Assembly into a completed device</li> <li>Final Testing – complete parametric &amp; functional testing over<br/>environments to verify device meets specification</li> </ul>                                                        |
| Part Testing                       | <ul> <li>Device testing Consists of <ul> <li>a)100% screens (electrical &amp; environmental) to eliminate weak or</li> <li>marginal parts.</li> </ul> </li> <li>b) Qualification to determine whether part design and construction is adequate for space usage <ul> <li>c) Quality Conformance Inspection or lot conformance tests to validate specific lot of parts to be used in flight hardware meets requirements</li> </ul> </li> <li>Governs the determination of a good versus bad part</li> </ul> |



# Terminology

- Active Parts-- electrical or electronic piece parts that have the ability to control electron flow
  - Discrete Semiconductors 1 die of either a diode function (conduct electricity in one direction) or transistor function (amplify and switch electronic signals and power).
    - Example: Schottky Diode, Rectifier, Zener Diode, Switching Transistor
  - Integrated Circuits also known as microcircuits 1 die containing multiple transistors and diodes inter-connected by a metalization pattern to provide a specific circuit function.
    - Example: ASIC, Static RAM, EEPROM, Microprocessor, FPGA
  - Hybrid Microcircuits also known as Hybrids contains multiple die (usually transistors, diodes, integrated circuits and passive elements) connected on a substrate within a package to provide a specific function
    - Example: DC-DC Converter
  - Multi-Chip Modules also known as MCM's similar to a hybrid but only contain multiple integrated circuits.
    - Example: Memory Modules (64M SRAM)





# Terminology

- Active Parts-- electrical or electronic piece parts that have the ability to control electron flow
  - Application Specific Integrated Circuit (ASIC) an integrated circuit device designed and fabricated to perform a specific function for an application
  - Field Programmable Gate Array (FPGA) an integrated circuit designed for a specific function within an application chain. The device manufacturer fabricates the generic unprogrammed device and delivers to a customer who then programs it for the application
  - ASICs usually used for speed (faster than FPGA & general microprocessor)
  - FPGAs often used to prove out an ASIC design
  - FPGAs cheaper & can be reprogrammed.



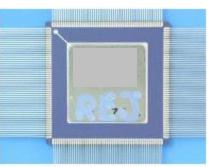
Photograph reprinted with permission of California Air Resources Training



Photograph reprinted with permission of Georgia Tech Micro Electronics Research Center



Photograph reprinted with permission of SHF Microwave Parts Company



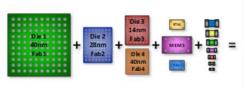

t number and traceability are importa

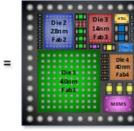
# Part Identification

- Devices are identified either with the military part number or contractor part number
  - Examples
    - 5962-10101VXA Integrated Circuit
    - M38510/10101SXA Integrated Circuit
    - JANS2N2222A Transistor
    - 3M114ABC Contractor Integrated Circuit
- Devices are manufactured and identified with a lot date code that allows traceability to a specific manufacturing lot
  - Lot date code represents the specific date when the device package was sealed

Part number and traceability are important – allows for trending and reachback of problems







### Quality Assurance Levels in MIL-SPECS

|                                             | Space Level<br>Hermetic*Space Level<br>Non-Hermetihe quality of being airtight.In common<br>engress or egress of                                                  |                                                                                                                                | Avionics Level<br>(launch<br>vehicles,<br>planes, tanks,                                                                                                                             | Commercial<br>Hermetic                                                                                                                                          | Non-Hermetic<br>Plastic                                                                                                   |
|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| - ·                                         | contaminants and is de                                                                                                                                            |                                                                                                                                | etc) Hermetic*                                                                                                                                                                       |                                                                                                                                                                 |                                                                                                                           |
| Integrated<br>Circuits<br>MIL-PRF-<br>38535 | Class V<br>Extensive testing<br>& documentation<br>includes x-ray,<br>tighter visual<br>inspection,<br>nondestruct bond<br>pull, longer more<br>stressful burn-in | Class Y/P<br>Essentially the<br>same testing<br>reqts as Class V<br>but no seal tests,<br>no bond pulls,<br>addtl visual reqts | Class Q<br>Less testing and<br>process controls<br>than Class V/Y. No<br>xray or non-<br>destruct bond<br>pull, less stringent<br>visual inspection<br>and shorter burn-<br>in times | Class T<br>Geared for<br>commercial space.<br>Reqts decreased<br>from Class V to<br>allow less costly<br>parts but has<br>increased risk due<br>to less testing | Class N/P<br>All requirements<br>are determined by<br>manufacturer and<br>each<br>manufacturer flow<br>will be different. |
| Hybrids<br>MIL-PRF-<br>38534                | Class K<br>Reqts similar to<br>Class V                                                                                                                            | Class L<br>Reqts similar to<br>Class Y                                                                                         | Class H<br>Reqts similar to<br>Class Q                                                                                                                                               | Class D & E<br>Reqts determined<br>by manufacturer                                                                                                              | Class F<br>Reqts similar to<br>Class H                                                                                    |
| Discrete<br>Semicondu<br>ctors<br>MIL-PRF-  | JAN S<br>Requirements<br>similar to Class V                                                                                                                       | N/A                                                                                                                            | JANTXV<br>Non-critical<br>JANTX<br>Reqts similar to                                                                                                                                  | JAN J or JAN<br>Reqts similar to<br>Class T                                                                                                                     | In<br>Development                                                                                                         |
| 19500                                       |                                                                                                                                                                   |                                                                                                                                | rea                                                                                                                                                                                  | fferent quality levels of<br>quirements for design                                                                                                              | , construction,                                                                                                           |
|                                             |                                                                                                                                                                   |                                                                                                                                |                                                                                                                                                                                      | iability and testing fo<br>plication                                                                                                                            | r the intended                                                                                                            |

#### MIL-PRF-ATM Purpose and goals

- MIL-PRF-ATM (Advanced Technology Microcircuit) intended to bring heterogeneous integrated (HI) components into the military specification (QML) arena
- HI parts procured as COTS, SCD, or MFG specific flows have been and continue to be used by various USG programs. ATM intends to standardize test and documentation experimentation
- ATM intended to be technology and MFG approach agnostic
  - Some technologies not addressed (integrated photonics, some III-IV items, etc.)
  - Fan out method agnostic
- Primary drivers from MIL-PRF-38535/34 to ATM are TSVs, chiplet use, >2D configuration







Die + Heterogeneous System in Package (SiP) Figure 6. Heterogeneous Integration and System in Package (SiP). Source: ASE

Ref: Heterogeneous Integration Roadmap - IEEE Electronics Packaging Society



#### Difference of ATM product vs. MIL-PRF-38534/38535 legacy

Each ATM product will have a SMD, Qualification plan, and Production plan

- Production plan is similar to legacy 38535 Appendix A material but may also address "test optimization" as part of initial production
  - Intent is to provide OEM flexibility to optimize test flows aligned with product capabilities vs. arbitrary recipe applied to all products
- Qualification plan incorporates multiple documents including radiation plan (RPP), Package integrity plan (PIDTP), and other elements to address qualification
  - ATM product typically have already undergone qualification and technology verification at OEM
  - Qualification differences addressed vs. failure mechanisms needing to be address for military / space needs
- Intent of SMD is to provide opportunity for OEMs to capture and make available to the community additional information not currently within SMD scope
- Each ATM product is expected to have a specification written by the manufacturer that is not approved by the qualifying activity
  - ATM products tend to be OEM specific with multiple levels of IP integrated
    - Availability of information to purchaser may require NDA

•

produce

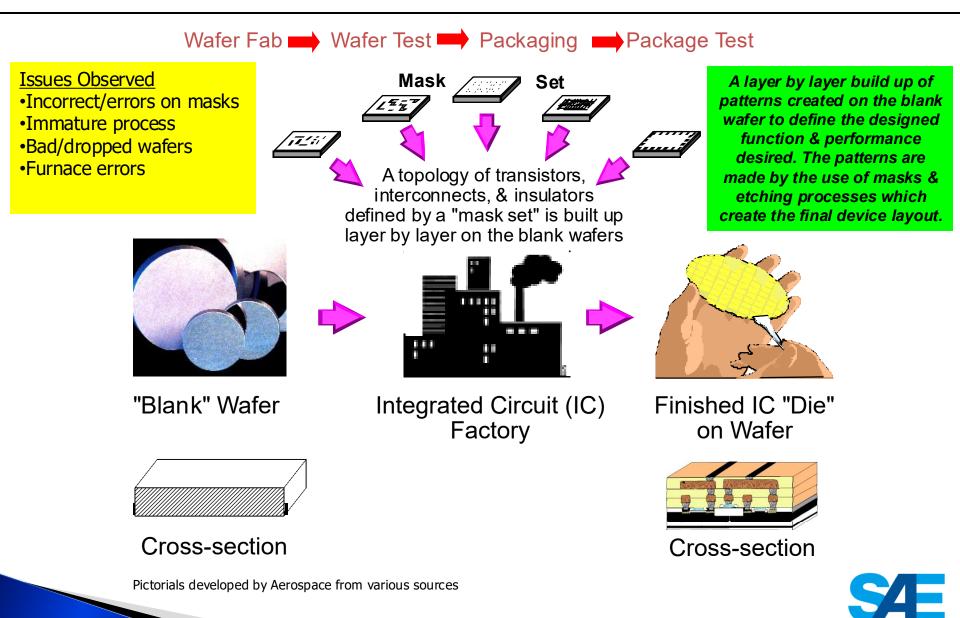
Intent of documentation change is to simplify and streamline where possible and ensure content is aligned with HI products vs legacy monolithic or hybrid

INTERNATIO

#### Status

Using MIL-PRF-38535 as basis, pulling in 38534 material and modifying to make applicable to HI production, test flows, radiation capabilities, etc.

OEMs provided flexibility to identify best method to validate product capabilities vs. failure mode

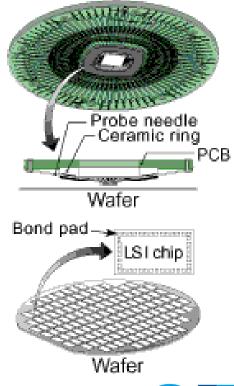

Integrating NASA and Aerospace industry activities as applicable

| Source | Section   | Main body text                       | Main body<br>tables                  | Appendix A                        | Appendix B                                         | Appendix C                                         | Appendix D                                                                                                           | Appendix E                                   | Appendix F                                                    | Appendix G                                       | Appendix H                | Appendix J                                                 |
|--------|-----------|--------------------------------------|--------------------------------------|-----------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------|--------------------------------------------------|---------------------------|------------------------------------------------------------|
|        | Used      | Yes                                  | Yes                                  | Yes                               | Yes                                                | Yes                                                | Yes                                                                                                                  | No                                           | Yes                                                           | Yes                                              | Yes                       | Yes                                                        |
| 38535  | Title     | Specification                        | Specification                        | Quality                           | Space<br>requirements                              | Radiation                                          | Sampling                                                                                                             | Qualification<br>of offshore<br>processes    | Tape bonded<br>items                                          | QML program                                      | Cert, Val, Qual           | TCI and screening                                          |
|        | ATM use   | Baseline for main<br>body text       | Baseline for<br>main body<br>tables  | Baseline for<br>Appendix A        | Integrate into<br>main body                        | Redlines and incorporate                           | TBD                                                                                                                  | Keep letter for<br>potential<br>future use   | potential                                                     | Incorporate as<br>needed into<br>other sections  | Baseline for<br>PIDTP     | Incorporate as<br>needed into<br>other sections            |
|        | Used      | Yes                                  | Yes                                  | Yes                               | No                                                 | Yes                                                | Yes                                                                                                                  | Yes                                          | Yes                                                           | Yes                                              | No                        | No                                                         |
| 38534  | Title     | Specification                        | Specification                        | Quality                           | Don't use                                          | Hermetic<br>element                                | Non-hermetic<br>element                                                                                              | Design and<br>construction<br>criteria       | Sampling                                                      | RHA                                              | Don't use                 | Don't use                                                  |
| 38534  | ATM use   | Incorporate<br>elements as<br>needed | Incorporate<br>elements as<br>needed | Don't use                         | Don't use                                          | Integrate into<br>main body<br>tables as<br>needed | Integrate into<br>main body<br>tables as<br>baseline                                                                 | Integrate into<br>Appendix A, H<br>as needed | Merge with<br>Appendix D as<br>appropriate                    | Baseline for<br>Appendix C                       | Don't use                 | Don't use                                                  |
|        | Used      | Yes                                  | Yes                                  | Yes                               | No                                                 | Yes                                                | TBD                                                                                                                  | No                                           | No                                                            | No                                               | Yes                       | No                                                         |
|        | Title     | Specification                        | Specification                        | Quality                           | Don't use                                          | Radiation                                          | Sampling                                                                                                             | Don't use                                    | Don't use                                                     | Don't use                                        | Cert, Val, Qual           | Don't use                                                  |
| ATM    | Rationale |                                      | See applicable<br>file<br>IN WORK    | See applicable<br>file<br>DRAFTED | Integrated<br>into main<br>body text and<br>tables | See applicable<br>file<br>IN WORK                  | Is the<br>sampling<br>rationale<br>applicable to<br>ATM devices?<br>Merge 35/34<br>sampling<br>appendixes<br>into 1? |                                              | Tape not<br>expected to<br>be applicable<br>to ATM<br>devices | Integrate into<br>main body<br>and Appendix<br>A | PIDTP material<br>ON DECK | May integrate<br>into Appendiz<br>H and other<br>locations |

- Shifting format from legacy MIL-STDs to focus on failure modes, mechanisms and intent behind tests
- Core issue with HI product is that legacy approaches to quality and reliability verification may not be applicable due to application dependencies resulting in need to identify alternative community acceptable approaches for "standard" quality and reliability validation products



#### Fabrication flow of an Active Device

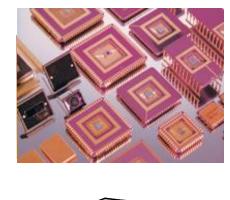


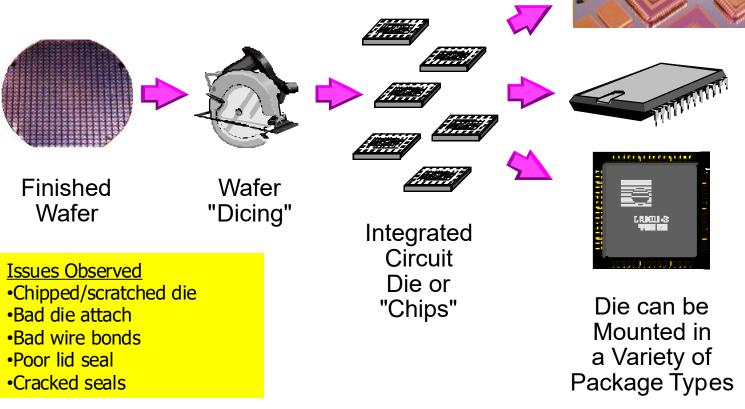

#### Wafer Test

- Wafer die automatically "probe tested"
  - First point of evaluating electrical characteristics after fabrication
- Purpose to "screen out" defective die prior to the expensive packaging step
- DC tests & slow speed dynamic tests
- Early look at Proof Of Development (POD) functionality
- Room & high temperature tests
- Die destined for multi-chip packaging require more stringent screening
- Issues Observed
  - Bad/Wrong test program or fixture
  - Overstressed/ESD causing yield problems

Wafer-level tests screen defective parts before proceeding to higher levels of assembly






Pictorials Courtesy of Unknown Origin on Internet

### Packaging (Assembly)

ICs that pass preliminary wafer test (probe) are then marked, cut into die and packaged







Pictorials Courtesy of Unknown Origin on Internet

# Packaging

- Packages for microelectronic devices come in many varieties and styles
  - Hermetic
    - Glass Body
    - Metal Can
    - Ceramic/Metal Flat Packs
    - Ceramic Dual-In-Line
    - Surface Mount
    - Leadless Chip Carrier
    - Custom
  - Non-Hermetic
    - Plastic
    - Flip-Chip

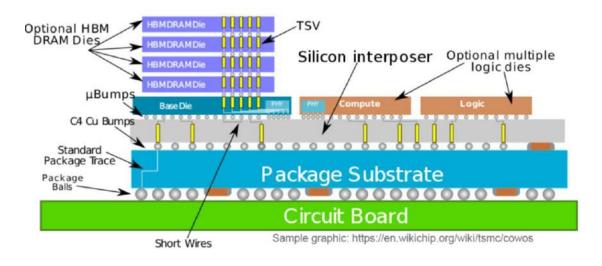













Many styles of packages



### **Advanced Packaging**

- Manufacturers using advanced packaging techniques for enhanced performance
  - Flip-chip die attachment
  - Column Grid Arrays
  - Non-hermetic
  - External capacitors for bypass and filtering



Pictorial courtesy of Xilinx Corporation



### **Specification History**

- In the early 1960's, the IC industry was developing, and IC failures were common. It was recognized that a series of standard screening tests could reduce or eliminate these "infant mortality" type failures
- The USAF Rome Air Development Center (RADC) was given the task and in 1968 developed MIL-STD-883
- 883 was intended for military hermetic parts
  - In the context of microelectronics, it implies an airtight seal that will keep moisture and other harmful gases from penetrating the sealed package.
  - Metals, ceramics and glasses are the materials used to form the hermetic s, al and prevent water vapor from accumulating inside the package.
  - A properly made hermetic seal with a sufficiently low leak rate can keep a package dry and moisture free for many years
- Concurrent with the development of MIL-STD-883 RADC established Mil-M-38510 procedures to specify the electrical and package outlines for standardization
- MIL-M-38510 set out the procedures to obtain a QPL listing for a given slash sheet and quality level
  - This is the predecessor of the modern Mil-Prf-38534/5
- This was a very effective system for the simpler part types and JAN slash sheets are still in use today.



### **Specification Today**

- A result of the Perry Initiative of the mid 1990's was to change the philosophy of rigid requirements in mil-specs and go to "performance specifications"
- The performance spec establishes the general requirements for the item (discrete semiconductor, monolithic integrated circuit or hybrid) and the verification requirements for ensuring that these devices meet the applicable performance as defined
- Performance Specs encourage and allow for alternate verification testing methods to meet performance requirements and foster ingenuity and growth within the supplier base.
- Performance Specifications
  - General Hybrid Spec MIL-PRF-38534L (3 DEC 2019) FSC 5962
  - General Specification for Microcircuits MIL-PRF-38535 FSC 5962
  - General Specification for Semiconductor Devices MIL-PRF-19500 FSC 5961
- Military Standards
  - Standard Test Methods for Microcircuits MIL-STD-883L
  - Standard Test Methods for Semiconductor Devices MIL-STD-750



#### MIL-PRF-19500, MIL-PRF-38534 and MIL-PRF-38535

- These specifications are performance specifications with the purpose of establishing the general requirements for the item (monolithic integrated circuit. Hybrid or discrete semiconductor) and the verification requirements for ensuring the devices meet the applicable performance as defined.
- The documents cover the following:
  - Design and Construction
  - Packaging
  - Traceability
  - Quality Assurance
  - Performance
  - Verification
  - Screening
  - Qualification
  - Quality/Technology Conformance Inspection
  - Test Optimization
  - Non-conformances
  - Audits
  - New Technology Insertion



### MIL-STD-883 and MIL-STD-750

- A collection of destruct and non-destruct test methods used as screening and qualification tests to verify microelectronic (monolithic and hybrids) performance requirements and to assess the reliability of devices
- 1000 series TMs... Environmental Tests
- 2000 series TMs... Mechanical Tests
- 3000 series TMs... Electrical Tests (Digital)
- 4000 series TMs... Electrical Tests (Linear)
- 5000 series are Test Procedures e.g. TM 5011, TM 5008
- When testing to 883 one MUST further specify the test condition, quality level and other details contained in the individual test method.
- MIL-STD-750 test methods are used for discrete devices and mirror test methods for the integrated circuits and hybrid devices



#### Plastic Encapsulated Microcircuits (PEMs) and Plastic Encapsulated Devices (PEDs)

- As described earlier, the mil-specs were developed for the use of hermetic packages, but most new complex devices are manufactured in plastic encapsulated packages
- Various organizations are generating requirements for military/space systems to utilize plastic devices
- The utilization for plastic parts in military and space applications have to ensure the parts are rugged and will meet the mission requirements
  - Temperature
  - Mechanical
  - Radiation
  - Reliability
- SAE with industry, and government support developed documents for utilization of commercial, COTs and other types of parts
  - AS6294/1 space and AS694/2 for terrestrial
  - AS6294/3 space discrete semiconductors and AS6294/4 discrete terrestrial
  - Task groups assigned to implement requirements in applicable mil-specs
  - Supplier buy-in mandatory
- JEDEC has various task groups assigned to implement these SAE documents into the mil-spec system to ensure a standardized flow for customers



### Package Level Testing

- Purpose to "screen out" defective or marginal devices not meeting performance requirements
- All parts are tested for DC, AC and functional performance
- Room, cold & high temperature tests are performed
- Issues Observed
  - Bad/Wrong test program or fixture
  - Overstressed/ESD causing yield problems

Pictorials Courtesy of Unknown Origin on Internet



First complete evaluation of electrical performance



#### Some Intrinsic Failure Mechanisms of Active Devices

- Electromigration
  - transport of material caused by the gradual movement of the <u>ions</u> in a <u>conductor</u> due to the <u>momentum</u> transfer between conducting <u>electrons</u> and diffusing metal <u>atoms</u>. It can cause the eventual loss of connections or failure of a circuit
- Time Dependent Dielectric Breakdown
  - when the <u>gate oxide</u> <u>breaks down</u> as a result of long-time application of relatively low electric field
- Negative Bias Temperature Instability
  - manifests as an increase in the <u>threshold voltage</u> and consequent decrease in drain current and <u>transconductance</u> of a MOSFET
- Bond Wire
  - Broken
  - Nicked
- Die Attach
  - Voiding
  - Thermal Conduction
- Thermal Runaway
  - an increase in temperature changes the conditions in a way that causes a further increase in temperature, often leading to a destructive result.
- Corrosion
  - an <u>electrochemical</u> process in which one <u>metal</u> <u>corrodes</u> preferentially to another when both metals are in electrical contact and immersed in an <u>electrolyte</u>



# **DEVICE FLOWS**

### Screening and Qualification/Quality Conformance Inspection

Governs the test routine based on specific technologies and failure mechanisms to provide a reliable part for military and space applications



# QML Monolithic IC Class Q, V and T Screening

| Item # | Screen                    | Class Q                             | Class<br>V/Y<br>space          | Class T                       | Rationale<br>for Test                              |
|--------|---------------------------|-------------------------------------|--------------------------------|-------------------------------|----------------------------------------------------|
| 1      | Wafer Lot<br>Acceptance   | QM Plan                             | QM Plan<br>or<br>883/5007      | QM Plan                       | Quality of<br>wafer                                |
| 2      | Non-Destruct Bond<br>Pull | No                                  | Yes –<br>883/2023              | No                            | Quality of wire bonds                              |
| 3      | Internal Visual<br>Insp   | Yes – 883/2010 cond<br>B            | Yes –<br>883/2010<br>cond A    | Yes –<br>883/2010<br>cond A   | Ensures no<br>defects<br>internal to<br>pkg        |
| 4      | Temp Cycle                | Yes – 883/1010C; 10<br>cyc, Y1 only | Yes –<br>883/1010C<br>; 10 cyc | Yes-<br>883/1010C<br>; 10 cyc | Ensure die<br>attach and<br>wire bond<br>integrity |
| 5      | Constant Accel            | Yes- 883/2001E                      | Yes-<br>883/2001E              | Yes-<br>883/2001E             | Ensures die is<br>attached well                    |
|        |                           |                                     |                                |                               |                                                    |
|        |                           | 25                                  |                                |                               |                                                    |

#### QML Monolithic IC Class Q, V and T Screening

|    | SCREEN                                                                         | CLASS Q        | CLASS V (Space) | CLASS T*       | Rationale for Test                                                                 |
|----|--------------------------------------------------------------------------------|----------------|-----------------|----------------|------------------------------------------------------------------------------------|
| 6  | Visual Inspection                                                              | Req'd 100%     | Req'd 100%      | Req'd 100%     |                                                                                    |
| 7  | Particle Impact Noise Detection<br>(PIND) (MIL-STD-883/Method 2020,<br>Cond A) | Not Req'd      | Req'd 100%      | Not Req'd      | Ensures device cavity is free of particles that could potentially cause failures   |
| 8  | Serialization                                                                  | Not Req'd      | Req'd 100%      | Not Req'd      | Allows for read and record<br>measurements to be recorded                          |
| 9  | Pre-burn-in Electrical                                                         | Req'd 100%     | Req'd 100%      | Req'd 100%     | Defines electrical performance of devices                                          |
| 10 | Burn-in (MIL-STD-883/Method 1015)                                              | Req'd 100%     | Req'd 100%      | Req'd 100%     | Stresses devices to weed out<br>marginal performance and<br>process drift failures |
|    |                                                                                | 125°C, 160 hrs | 125°C, 240 hrs  | 125°C, 160 hrs |                                                                                    |
| 11 | Interim Electrical                                                             | Not Req'd      | Req'd 100%      | Not Req'd      | Defines electrical performance post burn-in                                        |
|    |                                                                                |                | Read & Record   |                |                                                                                    |
| 12 | Reverse Bias Burn-in                                                           | Not Req'd      | Req'd 100%      | Not Req'd      | Stresses devices to weed out<br>marginal performance and<br>process drift failures |
|    | (MIL-STD-883/Method 1015, Cond<br>A or C) 72hrs, 150°C                         |                |                 |                |                                                                                    |
| 13 | Interim Electrical                                                             | Req'd 100%     | Req'd 100%      | Req'd 100%     | Defines electrical performance post burn-in (HTRB or static)                       |
|    |                                                                                |                | Read & Record   |                |                                                                                    |



#### QML Monolithic IC Class Q, V and T Screening (cont'd)

|    | SCREEN                                        | <u>CLASS Q</u> | CLASS V (Space) | CLASS T*   | Rationale for Test                                                                                   |
|----|-----------------------------------------------|----------------|-----------------|------------|------------------------------------------------------------------------------------------------------|
| 14 | Percent Defective                             | Req'd 5%       | Req'd 5%        | Req'd 5%   | Evaluates good versus marginal lots                                                                  |
|    | Allowable (PDA)                               |                | 3% functional   |            |                                                                                                      |
| 15 | Final Electrical                              | Req'd 100%     | Req'd 100%      | Req'd 100% | Defines electrical<br>performance (DC,AC,<br>functional, switching<br>across full mil-temp<br>range) |
| 16 | Seal (Fine & Gross) (MIL-STD-883/Method 1014) | Req'd 100%     | Req'd 100%      | Req'd 100% | Weeds out marginal seal leak devices                                                                 |
| 17 | X-Ray (MIL-STD-883/Method 2012), 2 views      | Not Req'd      | Req'd 100%      | Not Req'd  | Weeds out marginal<br>devices due to lid seal,<br>particles, etc                                     |
| 18 | External Visual (MIL-STD-883/Method 2009)     | Req'd 100%     | Req'd 100%      | Req'd 100% | Weeds out visual defects                                                                             |
| 19 | Radiation Latch-up (MIL-STD-883/Method 1020)  | Optional       | Optional        | Optional   | Weeds out devices<br>susceptible to radiation<br>latchup                                             |
| 20 | Technology Review Board                       | Req'd          | Req'd           | Reg'd      | Responsible for QML<br>program within supplier                                                       |



#### QML Monolithic IC Class Q, V and T Quality Conformance Inspection

|   | GROUP                               | GLASS Q                          | CLASS V                          | <u>CLASS T</u>                   |
|---|-------------------------------------|----------------------------------|----------------------------------|----------------------------------|
|   |                                     |                                  |                                  |                                  |
| 1 | Group A (electrical)                | Required                         | Required                         | As defined                       |
|   | DC, AC, Functional, Switching       | sample basis                     | sample basis                     | in the suppliers                 |
|   | 25°C, 125°C and -55°C               |                                  |                                  | QM Plan                          |
| 2 | Group B                             | Required on a sample basis       | Required on a sample basis       | As defined in the                |
|   | · ·                                 | every inspection lot             | every inspection lot             | suppliers QM Plan                |
|   |                                     | Resistance to Solv               | PhyDimensions                    |                                  |
|   |                                     | Solderability                    | Intl Water Vapor                 |                                  |
|   |                                     | Bond Strength                    | Resis to Solvents                |                                  |
|   |                                     |                                  | Int Visual/Mech                  |                                  |
|   |                                     |                                  | Bond Strength                    |                                  |
|   |                                     |                                  | Die Shear                        |                                  |
|   |                                     |                                  | Solderability                    |                                  |
|   |                                     |                                  | Lead Integrity                   |                                  |
|   |                                     |                                  | Seal                             |                                  |
|   |                                     |                                  | Lid Torque                       |                                  |
|   |                                     |                                  | Life Test                        |                                  |
|   |                                     |                                  | Temp Cycle                       |                                  |
|   |                                     |                                  | Acceleration                     |                                  |
|   |                                     |                                  | Seal                             |                                  |
| 3 | Group C                             | Life Test                        | N/A                              | As defined in the                |
|   |                                     | periodic - every quarter         |                                  | suppliers QM Plan                |
| 4 | Group D(package related)            | Req'd                            | Req'd                            | As defined in the                |
|   | periodic - every 6 months           | (same tests)                     | (same tests)                     | suppliers QM Plan                |
| 5 | Group E (radiation assurance tests) | Req'd if offerred as a radiation | Req'd if offerred as a radiation | Req'd if offerred as a radiation |
|   |                                     | device                           | device                           | device                           |



#### QML Monolithic IC Class Q, V, T and P Screening

| 3 Group C                             | Life Test initially and only after design or process changes | 1000 hours every lot at 125C            | 1000 hours every lot at 125C            | 1000 hours every lot at 125C            |
|---------------------------------------|--------------------------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|
| 4 Group D (package related)           | Req'd - same tests performed                                 | Req'd - same tests performed            | Req'd - same tests performed            | Req'd - same tests performed            |
| 5 Group E (radiation assurance tests) | Req'd if offerred as a radiation device                      | Req'd if offerred as a radiation device | Req'd if offerred as a radiation device | Req'd if offerred as a radiation device |



### Important Truths to Remember

- Space and Military level devices requirements are more stringent than lower grade level devices
- Space and Military level devices require tighter process controls at the wafer fabrication process than lower quality level devices
- Contractors will state their devices are space and military level equivalent
  - Many contractors actually believe this statement, but do not really understand the requirements of space devices
  - Many contractors will tell you the devices have been 100% screened or up-screened (procure a lower quality level part and perform tests to bring up to a higher quality level) to the space level requirements, but do not address the wafer fabrication, design or assembly requirements for space devices
  - Some parts actually meet all space requirements, but suppliers do not want to expend the funds to maintain a compliant space line

Evaluate and understand each contractor claim for space and military equivalent devices

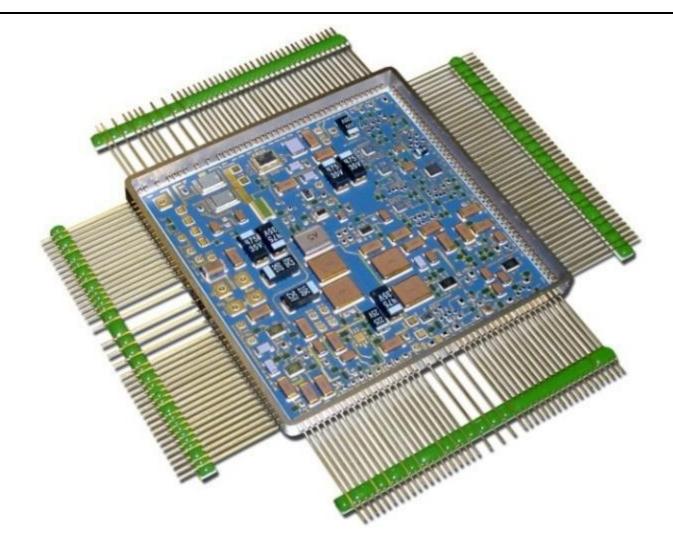


### Hybrid Microelectronics

- Hybrid Microelectronic devices are very complex in nature due to the assembly of different die types and assembly techniques used for fabricating hybrids
- Many issues have been observed at all stages of design, manufacturing, testing and usage
  - Design Issues
    - Components/elements not correctly selected or not properly derated
    - Use of commercial components versus military or space grade
    - Characterization
      - Components/elements not completely characterized
      - Temperature range
      - Environmental conditions
      - Radiation environment
    - Failure mechanisms of components/elements not identified or understood
  - Manufacturing
  - Processes not completely understood or characterized
  - Processes not qualified to application environments
  - Use of techniques not allowed for space
    - Components stacked on other components or touching underside of lid/package
    - Wire dress and support
  - Loose particles inside cavity
  - Components coming loose and/or lifting
  - Use of prohibited materials i.e., pure tin



# Hybrid Microelectronics (continued)


- Many issues have been observed at all stages of design, manufacturing, testing and usage
  - Testing
    - Components/elements not tested completely or at all
    - End item not tested completely (Limited environments)
    - Ignoring failures
    - Wire bonds lifting/breaking
    - Elements/substrates/components lifting
    - Radiation failures
- In order to reduce and/or eliminate problems, the following are some recommended solutions
  - Select suppliers/manufacturers with a known high reliability track record for similar product
  - Select the proper components and materials for the application requirements

     quality level, electrical, mechanical, thermal and radiation performance
  - Characterize the complete operation of the component, hybrid, module, circuit in the application conditions and understand the margin available
  - Evaluate the physics of failure and understand all the potential failure mechanisms to allow mitigation
  - Evaluate and characterize the manufacturing processes
  - Qualify the item to the full application requirements with margin

Hybrids continue to be a major source of problems and must be evaluated in detail



### Hybrid Photo





## New Technology

- New technology/devices that are to be utilized for space applications and have no space heritage, must be characterized and qualified to ensure they will meet space mission requirements
- Military level grade parts do receive same level characterization as space level
- Characterization all aspects of the device technology must be evaluated to ensure all failure mechanisms are known and understood, the process is well controlled, the long-term reliability of the product is established, radiation characteristics are identified, and overall parametric performance is well defined in terms of margins and areas of concern
  - Wafer Level Reliability (i.e., Electromigration, TDDB, Antifuse, etc.)
  - Failure Modes Effects Analysis evaluation of all potential failure modes and the impacts
  - Physics of Failure approach
  - Process variability analysis
  - Wafer Lot Acceptance
  - Long Term Reliability Testing
- Qualification
  - Standard mil-spec tests

#### New technology must be completely evaluated for space utilization



#### Summary

- The management of PMP activities at the contractors is a critical task that requires personnel with expertise in many areas
- PMP tasks establish the heart of the system reliability based upon part selection, procurement and testing
- The military parts are divided into many classes for different applications
- A major part of PMP management is to understand the nuances of the classes and select the "best" part for the application and balance reliability, cost and schedule for the program
- Hybrids continue to be a major source of problems and must be evaluated in detail

PMP management is critical to ensure long term system reliability



#### **Other Flows**



### QML Hybrid IC Class D, E, G, H and K Screening

|   | Class H - Genera               | I Military/Avionics                                   |                                                                                        |                                 |                           |                    |
|---|--------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------|---------------------------|--------------------|
|   | Class K - Space                |                                                       |                                                                                        |                                 |                           |                    |
|   | Class G - Meets (              | Class H Tests & Insp                                  | ections except incomin                                                                 | g. Conformance In               | spection guarant          | e                  |
|   | by sup                         |                                                       |                                                                                        |                                 |                           |                    |
|   |                                |                                                       | some exceptions define                                                                 |                                 |                           |                    |
|   | Class D - Built an             | d tested to manufact                                  | urers flow (commercial                                                                 | )                               |                           |                    |
|   | SCREEN                         | CLASS H                                               | CLASS K                                                                                | CLASS E                         | CLASS D                   | <u>CLASS</u><br>G  |
| 1 | Element<br>Evaluation          | Required Each lot<br>of elements<br>(minimal testing) | Required Each lot of<br>elements (extensive<br>testing including<br>1000 hr. life test | Same as H or K<br>as applicable | Manufacturer<br>specified | Same as<br>Class H |
| 2 | Pre-seal Burn-in               | Optional                                              | Optional                                                                               | Same as H or K<br>as applicable | Manufacturer specified    | Same as<br>Class H |
| 3 | Non-destructive<br>Bond Pull   | Not Required                                          | Req'd 100%                                                                             | Same as H or K<br>as applicable | Manufacturer specified    | Same as<br>Class H |
| 4 | Internal Visual                | Req'd 100%                                            | Req'd 100%                                                                             | Same as H or K<br>as applicable | Manufacturer specified    | Same as<br>Class H |
|   |                                | Condition H                                           | Condition K                                                                            | Same as H or K<br>as applicable | Manufacturer specified    | Same as<br>Class H |
| 5 | Temperature<br>Cycling, 10 cyc | Req'd 100%,<br>Cond C                                 | Req'd 100%, Cond C                                                                     | Same as H or K<br>as applicable | Manufacturer specified    | Same as<br>Class H |
| 6 | Constant<br>Acceleration       | Req'd 100%, Y1,<br>3000 Gs                            | Req'd 100%, Y1,<br>3000 Gs                                                             | Same as H or K<br>as applicable | Manufacturer specified    | Same as<br>Class H |



#### QML Hybrid IC Class D, E, G, H and K Screening (Cont.)

|    | SCREEN                                       | CLASS H                                          | CLASS K                                         | CLASS E                         | CLASS D                   | CLASS G            |
|----|----------------------------------------------|--------------------------------------------------|-------------------------------------------------|---------------------------------|---------------------------|--------------------|
| 7  | Particle Impact<br>Noise Detection<br>(PIND) | Not Req'd                                        | Req'd 100% per<br>883/2020 Cond A               | Same as H<br>or K as<br>applic. | Manufacturer<br>Specified | Same as Class<br>H |
| 8  | Serialization                                | Not Req'd                                        | Req'd 100%                                      | Same as H<br>or K as<br>applic. | Manufacturer<br>Specified | Same as Class<br>H |
| 9  | Pre-burn-in<br>Electrical per<br>SMD or SCD  | Optional                                         | Req'd 100%                                      | Same as H<br>or K as<br>applic. | Manufacturer<br>Specified | Same as Class<br>H |
| 10 | Burn-in per<br>883/Method<br>1015            | Req'd 100%, 125°C,<br>160 hrs.                   | Req'd 100%,<br>125°C 320 hrs.                   | Same as H<br>or K as<br>applic. | Manufacturer<br>Specified | Same as Class<br>H |
| 11 | Final Electrical per SMD or SCD              | Req'd 100%,                                      | Req'd 100% Read<br>& Record                     | Same as H<br>or K as<br>applic. | Manufacturer<br>Specified | Same as Class<br>H |
| 12 | Percent<br>Defective<br>Allowable (PDA)      | Req'd 10% or 1<br>device whichever is<br>greater | Req'd 2% or l<br>device whichever<br>is greater | Same as H<br>or K as<br>applic. | Manufacturer<br>Specified | Same as Class<br>H |
| 13 | Seal (Fine &<br>Gross)                       | Req'd 100%                                       | Req'd 100%                                      | Same as H<br>or K as<br>applic. | Manufacturer<br>Specified | Same as Class<br>H |
| 14 | X-ray                                        | Not Req'd                                        | Req'd 100%                                      | Same as H<br>or K as<br>applic. | Manufacturer<br>Specified | Same as Class<br>H |
| 15 | External Visual                              | Req'd 100%                                       | Req'd 100%                                      | Same as H<br>or K as<br>applic. | Manufacturer<br>Specified | Same as Class<br>H |
|    | Radiation*                                   | Optional                                         | Optional                                        | Same as H<br>or K as<br>applic. | Specified                 | Same as Class<br>H |

\* Determined by manufacturer whether radiation testing is performed at element, hybrid level or both 38



#### QML Hybrid IC Class D, E, G, H and K Screening Quality Conformance Test (In-line or End of Line Options)

|   | GROUP                                                                  | CLASS H                                                                                                                                                                                                                                         | <u>CLASS K</u>                                                                                                                                                                                                                                       | CLASS E                         | CLASS D                   | CLASS G                                                  |
|---|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------|----------------------------------------------------------|
| 1 | Group A (electrical)<br>(every lot)                                    | Required Sample<br>Basis                                                                                                                                                                                                                        | Required Sample<br>Basis                                                                                                                                                                                                                             | Same as Hor K as<br>Applicable  | Manufacturer<br>Specified | Same as Class H<br>(Guaranteed but may<br>not be tested) |
| 2 | Group B (every lot)                                                    | Phy Dimensions<br>Solderability<br>Bond Strength<br>Resistance to Solv<br>InternVisual/Mech<br>Die shear                                                                                                                                        | Phy Dimensions<br>Resis to Solvents<br>Int Visual/Mech<br>Bond Strength<br>Die Shear<br>Solderability<br>Seal                                                                                                                                        | Same as H or K as<br>Applicable | Manufacturer<br>Specified | Same as Class H<br>(Guaranteed but may<br>not be tested) |
| 3 | Group C (once for qual<br>and only w hen design or<br>process changes) | Resistance to Soldering<br>Heat External Visual<br>PIND<br>Temp Cycle<br>Mech Shock/Accel<br>Random Vib<br>Seal<br>PIND<br>Visual<br>Electrical<br>Life Test<br>Int Water Vapor<br>Internal Visual<br>Wire Bond Strenth<br>Element Shear<br>ESD | Resistance to<br>Soldering Heat External<br>Visual PIND<br>Temp Cycle<br>Mech Shock/Accel<br>Random Vib<br>Seal<br>PIND<br>Visual<br>Electrical<br>Life Test<br>Internal Water Vapor<br>Internal Visual<br>Wire Bond Strenth<br>Element Shear<br>ESD | Same as Hor K as<br>Applicable  | Manufacturer<br>Specified | Same as Class H<br>(Guaranteed but may<br>not be tested) |



#### QML Hybrid IC Class D, E, G, H and K Screening Quality Conformance Test (In-line or End of Line Options)

|   | GROUP                                                               | <u>CLASS H</u>                                                                                          | <u>CLASS K</u>                                                                                          | <u>CLASS E</u>                  | CLASS D                   | <u>CLASS G</u>                                           |
|---|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------|----------------------------------------------------------|
| 4 | Group D (package related)<br>( once for qual and every<br>6 months) | Thermal Shock<br>Stabilization bake<br>Lead Integrity<br>Seal<br>Salt Atmosphere<br>Metal Pkg Isolation | Thermal Shock<br>Stabilization bake<br>Lead Integrity<br>Seal<br>Salt Atmosphere<br>Metal Pkg Isolation | Same as H or K as<br>Applicable | Manufacturer<br>Specified | Same as Class H<br>(Guaranteed but may<br>not be tested) |
|   |                                                                     |                                                                                                         |                                                                                                         |                                 |                           |                                                          |



#### QML Discrete Device JAN, JANTX, JANTXV, JANS and JANJ Screening

|    | SCREEN                                         | JANS                           | JAN TXV           | JAN TX            | JAN J             | JAN* | Rationale for Test                                                                                                                               |
|----|------------------------------------------------|--------------------------------|-------------------|-------------------|-------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | Internal<br>Visual                             | Required 100%                  | Required 100%     | Not<br>Applicable | Required          | *    | Eliminate potential visual failures                                                                                                              |
| 2  | Stabilization<br>Bake                          | Optional                       | Optional          | Optional          | Optional          | *    | High temperature bake to stabilize process paramters                                                                                             |
| 3  | Temp Cycle<br>20 cycles                        | Required 100%                  | Required 100%     | Required 100%     | Required<br>100%  | *    | Eliminate marginal wire bonds and die attach                                                                                                     |
| 4  | Surge                                          | Required 100%                  | Required 100%     | Required 100%     | Required 100%     | *    | Eliminate marginal electrical devices                                                                                                            |
| 5  | Thermal<br>Impedance                           | Required 100%                  | Required 100%     | Required 100%     | Required 100%     | *    | Measure thermal impedance of actual devices                                                                                                      |
| 6  | Constant<br>Acceleration                       | Required<br>100%,Y1<br>20,000G | Optional          | Optional          | Optional          | *    | Weeds out marginal die attach devices                                                                                                            |
| 7  | PIND, Cond<br>A                                | Required 100%                  | Not<br>Applicable | Not<br>Applicable | Required 100%     | *    | Eliminates loose particles that can cause failure                                                                                                |
| 8  | Instability<br>Shock (Axial<br>Lead<br>Diodes) | Required<br>100%               | Not<br>Applicable | Not<br>Applicable | Not<br>Applicable | *    | Detect any semiconductor<br>device discontinuity "ringing" or<br>shifting of the forward dc<br>voltage characteristic monitored<br>during shock. |
| 9  | Seal                                           | Optional                       | Optional          | Optional          | Optional          | *    | Eliminates marginal seals                                                                                                                        |
| 10 | Serialization                                  | Required 100%                  | Not<br>Applicable | Not<br>Applicable | Not<br>Applicable | *    | Ability to record measurements                                                                                                                   |



#### QML Discrete Device JAN, JANTX, JANTXV, JANS and JANJ Screening

|    | SCREEN                         | JANS                       | JAN TXV                | JAN TX                 | JAN J                      | * JAN | Rationale for Test                                                                                |
|----|--------------------------------|----------------------------|------------------------|------------------------|----------------------------|-------|---------------------------------------------------------------------------------------------------|
|    |                                |                            |                        |                        |                            |       |                                                                                                   |
| 11 | Interim Electrical             | Required<br>100%           | Not<br>Applicable      | Not<br>Applicable      | Required<br>100%           | *     | Provides measured<br>performance values to<br>determine marginal devices                          |
| 12 | High Temp Reverse<br>Bias      | Required<br>48 hrs<br>min  | Required 48<br>hrs min | Required 48<br>hrs min | Required<br>48 hrs<br>min  | *     | Stresses devices to look for<br>ionic mobile contamination<br>failure mechanisms                  |
| 13 | Interim Electrical &<br>Deltas | Required<br>100%           | Required<br>100%       | Required<br>100%       | Required<br>100%           | *     | Provides measured<br>performance values to<br>determine marginal devices                          |
| 14 | Burn-In                        | Required<br>100%           | Required<br>100%       | Required<br>100%       | Required<br>100%           | *     | Sresses device to weed out<br>marginal devices based on<br>failure mechanisms of<br>technology    |
| 15 | Final Electrical               | Required<br>Subgp 2<br>& 3 | Required<br>Subgp 2    | Required<br>Subgp 2    | Required<br>Subgp 2<br>& 3 | *     | Provides measured<br>performance values to<br>determine marginal devices                          |
|    |                                | Deltas                     | Deltas                 | Deltas                 | Deltas                     | *     | Provides measurement of<br>stability performance                                                  |
| 16 | Seal                           | Required                   | Required               | Required               | Required                   | *     | Weeds out marginal devices based on seal issues                                                   |
| 17 | Radiography                    | Required                   | Not<br>Applicable      | Not<br>Applicable      | Required                   | *     | Provides evaluation of bond<br>issues, seal issues and<br>foreign material                        |
| 18 | External Visual                | Required                   | Not<br>Applicable      | Not<br>Applicable      | Required                   | *     | Weeds out devices visually<br>with issues such as bent or<br>broken leads,<br>contaminatioin, etc |
| 19 | Case Isolation                 | Required<br>100%           | Required<br>100%       | Required<br>100%       | Required                   | *     | Weeds out marginal case isolation on packages                                                     |



# QML Discrete Device JAN, JANTX, JANTXV, JANS and JANJ Quality Conformance Test

|   | GROUP                             | JANS                         | JAN TXV                       | JAN TX               | JAN J                | JAN*                 |
|---|-----------------------------------|------------------------------|-------------------------------|----------------------|----------------------|----------------------|
| 1 | Group A (electrical) sample basis | Required (every lot)<br>15/0 | Required (every lot)<br>116/0 | Required (every lot) | Required (every lot) | Required (every lot) |
|   |                                   |                              |                               | 45/0                 | 15/0                 | 45/0                 |
| 2 | Group B                           | (every lot)                  | (every lot)                   | (every lot)          | (every lot)          | (every lot)          |
|   | sample basis                      | Phy Dimensions               | Solderability                 | Same as<br>TXV       | Same as<br>TXV       | Same as<br>TXV       |
|   |                                   | Solderability                | Resis to Solvents             |                      |                      |                      |
|   |                                   | Resistance to Solv           | Temp Cycle                    |                      |                      |                      |
|   |                                   | Temp Cycle                   | Thermal Schock                |                      |                      |                      |
|   |                                   | Thermal Shock                | Surge                         |                      |                      |                      |
|   |                                   | Surge                        | Seal                          |                      |                      |                      |
|   |                                   | Seal                         | Electrical                    |                      |                      |                      |
|   |                                   | Electrical                   | <b>Op Life/Electrical</b>     |                      |                      |                      |
|   |                                   | Decap-Internal Vis           | Bond Strength                 |                      |                      |                      |
|   |                                   | Bond Strength                | Decap-Internal Vis            |                      |                      |                      |
|   |                                   | SEM                          | <b>Thermal Resistance</b>     |                      |                      |                      |
|   |                                   | Die Shear                    | High Temp Life (non-c         | op)                  |                      |                      |
|   |                                   | Intermittent Op Life         | Electrical                    |                      |                      |                      |
|   |                                   | Seal/Electrical              |                               |                      |                      |                      |
|   |                                   | Acelerated Op                |                               |                      |                      |                      |
|   |                                   | Life/Electrical              |                               |                      |                      |                      |



#### QML Discrete Device JAN, JANTX, JANTXV, JANS and JANJ Quality Conformance Test

| GROUP                 | JANS                   | JAN TXV            | JAN TX         | <u>JAN J</u> | JAN*           |
|-----------------------|------------------------|--------------------|----------------|--------------|----------------|
| 3 Group C             |                        | Physical Dimensio  | Same as TXV    | Same as TXV  | Same as TXV    |
| (once per year for al | I                      |                    |                |              |                |
| classes)              | Thermal Shock          | Thermal Shock      |                |              |                |
|                       | Terminal Strength      | Terminal Strength  |                |              |                |
|                       | Temperature Cycle      | Temperature Cycle  | e              |              |                |
|                       | Seal                   | Seal               |                |              |                |
|                       | Moisture Resistance    | Moisture Resistan  | се             |              |                |
|                       | Electrical             | Electrical         |                |              |                |
|                       | Shock                  | Shock              |                |              |                |
|                       | Vibration              | Vibration          |                |              |                |
|                       | Constant Accel         | Constant Accel     |                |              |                |
|                       | Electrical             | Electrical         |                |              |                |
|                       | Salt Atm               | Salt Atm           |                |              |                |
|                       | Thermal Resistance     | Thermal Resistance | e              |              |                |
|                       | Op Life/Seal/Electrica | l Op Life          |                |              |                |
|                       | IGA                    | IGA                |                |              |                |
| 4 Group D (radiation) | As Required            | As Required        | Not Applicable | As Required  | Not Applicable |
|                       |                        |                    |                |              |                |
|                       |                        |                    |                |              |                |
|                       |                        |                    |                |              |                |
|                       |                        |                    |                |              |                |
|                       |                        |                    |                |              |                |
|                       |                        | 44                 |                |              |                |

INTERNATIONAL

#### QML Discrete Device JAN, JANTX, JANTXV, JANS and JANJ Quality Conformance Test

|   | GROUP                     | JANS                       | JAN TXV       | JAN TX      | <u>JAN J</u> | <u>JAN*</u>   |
|---|---------------------------|----------------------------|---------------|-------------|--------------|---------------|
| 5 | Group E                   | Thermal Shock or           | Same as JAN S | Same as JAN | Same as JAN  | Same as JAN S |
|   | Qual only for all classes | Temp Cycle                 |               |             |              |               |
|   |                           | Life Test                  |               |             |              |               |
|   |                           | DPA                        |               |             |              |               |
|   |                           | Thermal Resistance         |               |             |              |               |
|   |                           | Barometric Pressure        |               |             |              |               |
|   |                           | ESD                        |               |             |              |               |
|   |                           | Resistance to Sold He      | eat           |             |              |               |
|   |                           | Visual                     |               |             |              |               |
|   |                           | Seal Electrical            |               |             |              |               |
|   |                           | <b>Reverse Stability</b>   |               |             |              |               |
|   |                           | <b>Resistance to Glass</b> |               |             |              |               |
|   |                           | Cracking                   |               |             |              |               |
|   |                           |                            |               |             |              |               |
|   |                           |                            |               |             |              |               |
|   |                           |                            |               |             |              |               |
|   |                           |                            |               |             |              |               |
|   |                           |                            |               |             |              |               |
|   |                           |                            |               |             |              |               |
|   |                           |                            |               |             |              |               |
|   |                           |                            |               |             |              |               |
|   |                           |                            |               |             |              |               |
|   |                           |                            |               |             |              |               |



- JEDEC JC13 and SAE CE-11 / 12 are as effective as we want them to be. Inputs from user community is very important. We need your active participation in various sub-committees. It is valuable
- We would appreciate your inputs on this tutorial please tell us what worked and what did not work.
- Please feel free to contact us anytime for any questions related to Mil Stds, SAE and JEDEC JC13 workings or any parts / component engineering related questions. Our emails are on page 1 of this tutorial

#### Thank You

