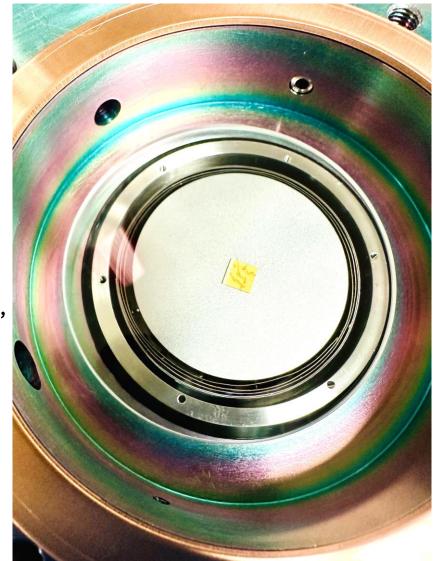
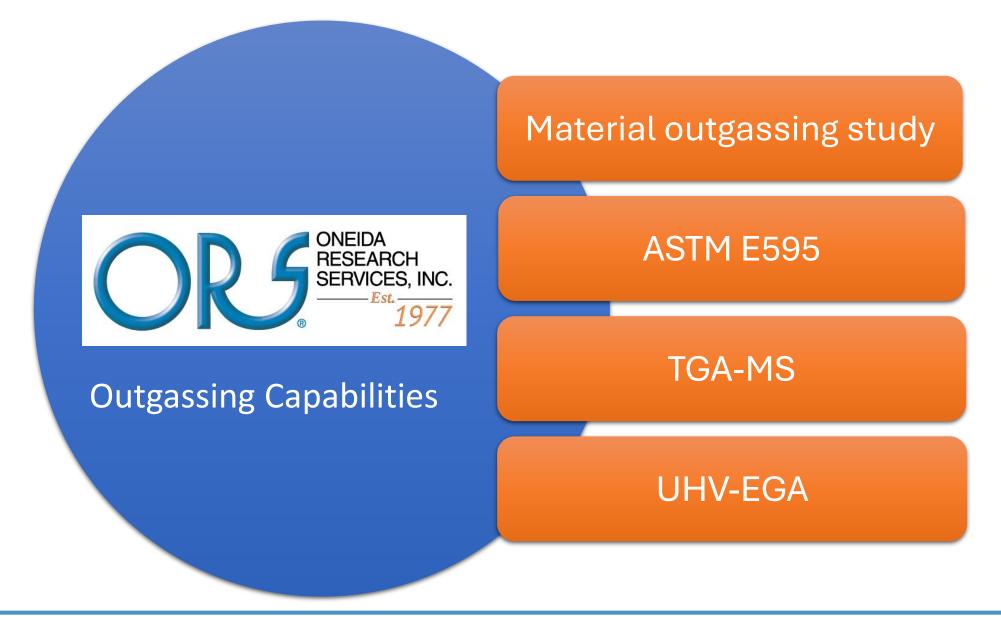

Enhancing Microelectronics Reliability Through Comprehensive Outgassing

Jayeshkumar Das Ph.D. Director of Technology & Business Development

5/1/2025 CMSE 2025



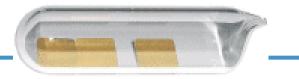
INSPECTION • ANALYSIS • TESTING



Plan of presentation

- \circ $\,$ Comprehensive outgassing capabilities at ORS $\,$
- What is Ultra-High Vacuum Evolved Gas Analyzer (UHV-EGA)?
- \circ Case study
 - Failure analysis for hermetic packages that failed MIL-STD 883, TM 1018
- $\circ~$ What is next: Standard Test Method

Material Outgassing Study

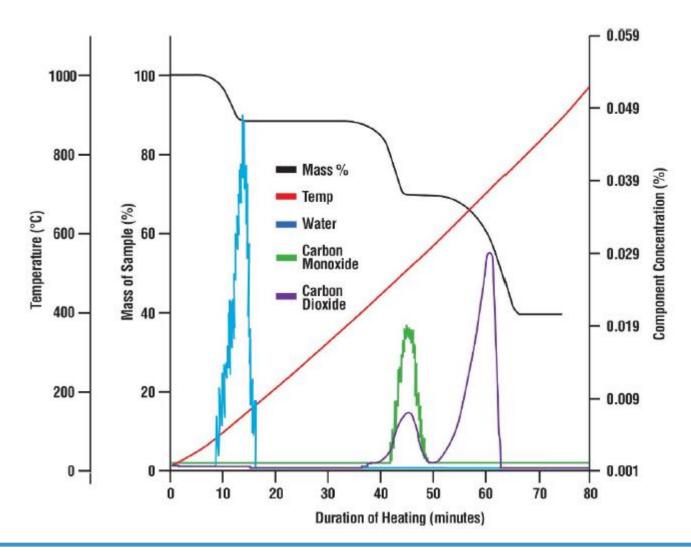

- The sample is hermetically sealed in a clean and dry glass ampoule under controlled atmosphere (e.g. dry N2 or 5%He/Bal N2, or rough vacuum).
- A thermal stress is then applied and the sample outgasses in the hermetic ampoule (up to 450°C). (Quartz to 1100C)
- Finally, an IVA[®] and/or GC/MS test is performed on the ampoule.
- The test results give the full gas picture (sealing atmosphere + outgassed substances).
- A large range of organic and inorganic substances can be provided by performing both IVA[®] and GC/MS testing.

ASTM E595: A screening technique to determine volatile content of materials when exposed to vacuum environment

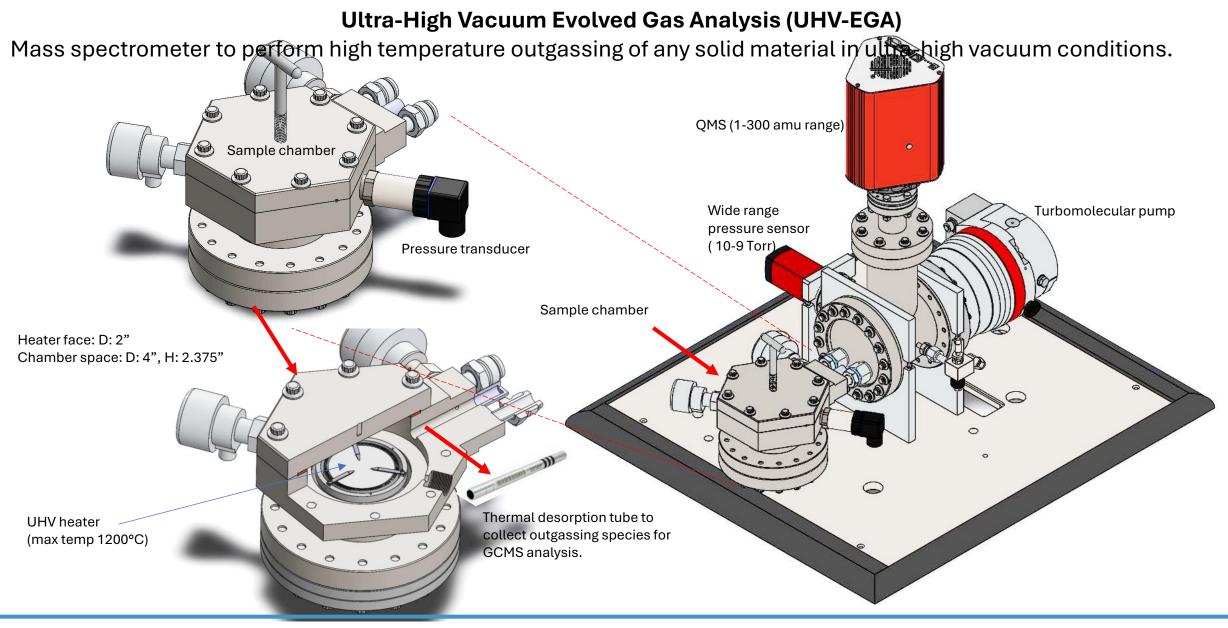
Designation: E595 – 15 (Reapproved 2021)

Standard Test Method for Total Mass Loss and Collected Volatile Condensable Materials from Outgassing in a Vacuum Environment¹

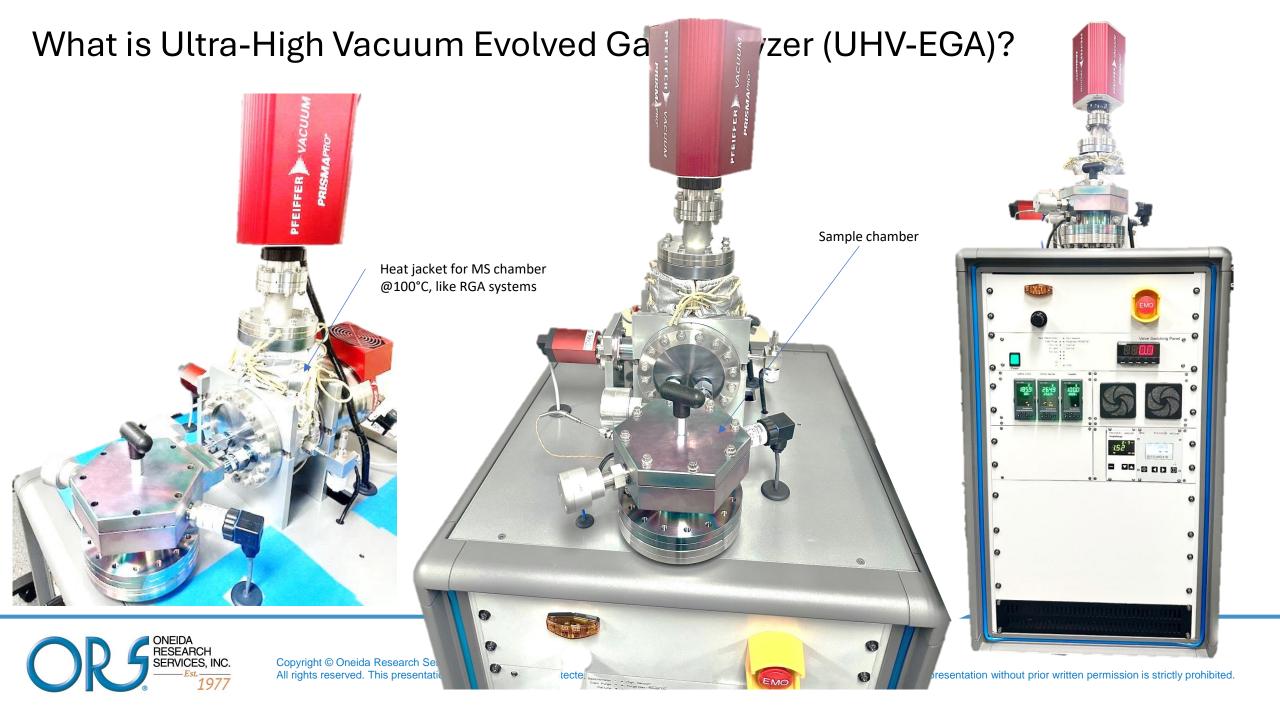
Test conditions: 125°C at less than 5×10^{-5} (Torr) for 24 h

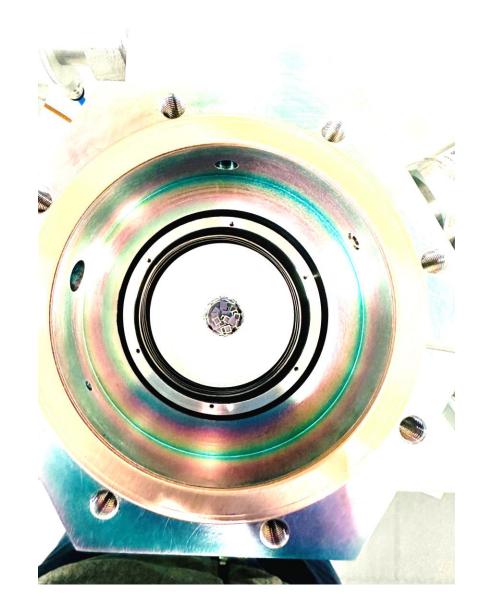

Sample: Organic, polymeric and inorganic materials (e.g., Polymer potting compounds, foams, elastomers, films, tapes, insulations, Shrink tubing, adhesives, coatings, fabrics, tie cords and lubricants)

Determination: Total Mass Loss (TML) and Collected Volatile Condensable Materials (CVCM) (e.g., TML of 1.00% and CVCM of 0.10% as screening levels for rejection of spacecraft materials.)



Thermal stability per MIL-STD-883J, Method 5011 (sect. 3.5.2 & 3.8.5), originated from ASTM D3850-12

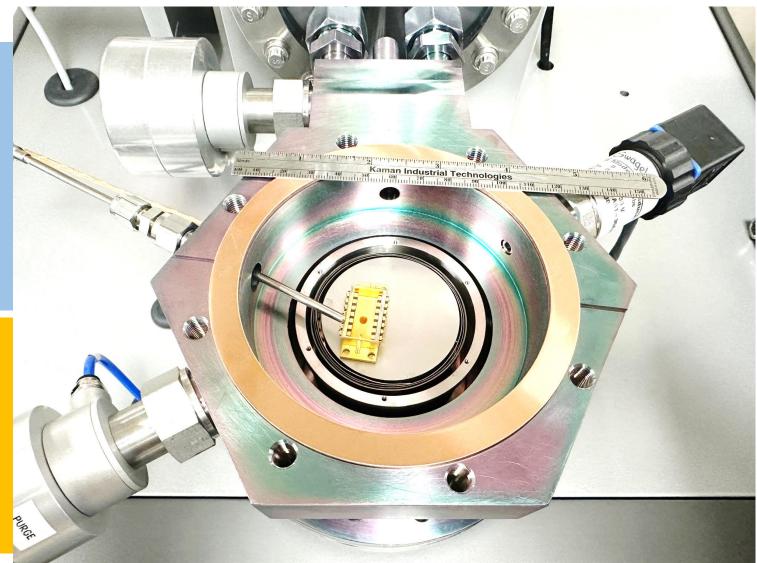

- TGA-MS is an important tool used for material characterization across industries.
- Samples are placed in a Nitrogen atmosphere (5-30mL/min flow). They begin at room temperature (25°C) and then get heated 2°C-10°C/min up to a final temperature of 200°C (max 1000°C). During this test, the weight of the samples is continuously measured.
- A material passes this standard if the weight loss at 200°C is less than or equal to 1.0% of the cured material weight. Three samples are tested and the average value of the three must meet or exceed the minimum requirements.



Technical specifications of UHV-EGA

- Outgassing from room temperature to 1200°C
- Heating rates 0.2°C/min to 15°C/min
- Vacuum as low as <5E-8 Torr
- Mass range: 1 to 300 amu
- Scan speed: scan per 10 seconds
- Ion current range: 1E-6 to 1E-11 Amp
- Provision for identification of organic compounds using GCMS

Applications of UHV-EGA


Samples:

Type: Solids

- Wafers
- Ceramics (high temperature electronics)
- Battery raw materials
- Electronics packages & their components
- Metals & Alloys
- Polymers, adhesives

Processes:

- Simulating baking and sealing processes
- Annealing
- Adhesive curing process
- Optimization of baking duration
- Outgassing rates (e.g, moles/g/sec)
- Component level failure analysis

Case study with UHV-EGA

Identifying Root Cause of Moisture Failures in Hermetic Packages with UHV-EGA

Moisture concentration (ppmv)

Sample 2: 1479 Sample 3: 30,863

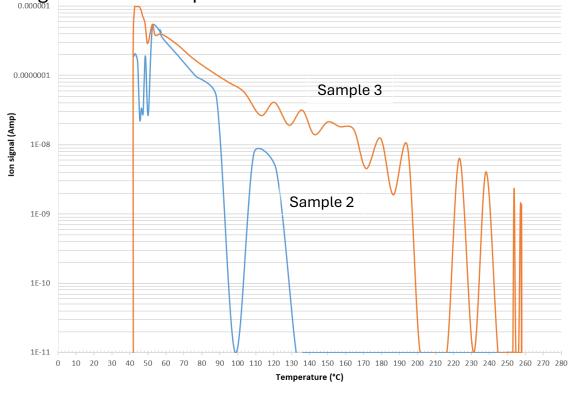
Sample 2 cannot be a leaker as no oxygen detected.

8282 Halsey Road Whitesboro, New York 13492 Tel: (855) ORS-LABS Email: iva@orslabs.com • Web: www.orslabs.com

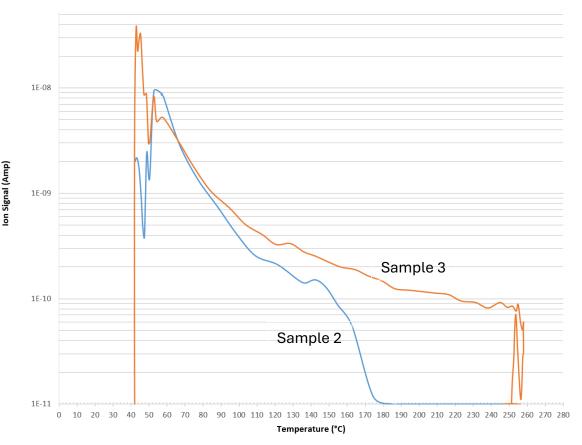
Internal Vapor Analysis - Test Report

ORS Report: Date Tested: Manufacturer:	C	65-001 1ar 2025											
Package Type: Device Type: Part No.:	10 PIN CFPK INTEGRATED CIRCUIT												
Lot/Date Code: Qty. Tested: P.O. /Release N						-	-			Qualifi	ed C	ompone	nts
SAMPLE ID		1		2		3		4		5		6	
Pass/Fail		FAIL		PASS		FAIL		PASS		PASS		PASS	
Inlet Pressure	torr	N/A		N/A		N/A		N/A		N/A		N/A	
Sys. Pressure	torr	9.6e-6		9.3e-6		6.9e-6		1.0e-5		9.4e-6		7.1e-6	
Sample Temp.	°C	100.0		100.1		100.0		99.9		100.0		100.0	
Relative Humidity	RH%	1.7		0.2		3.6		0.3		0.4		0.3	
Volume	cc∙atm	0.005		0.005		0.004		0.005		0.005		0.004	
Nitrogen	ppmv	978,154		994,018		923,602		992,936		991,055		993,081	
Oxygen	ppmv	ND	P	ND	P	ND	P	ND	P	ND	P	ND	P
Argon	ppmv	ND		ND		24		ND		ND		ND	
Carbon Dioxide	ppmv	6,766		4,201		44,895		3,865		5,032		3,862	
Moisture	ppmv	13,849	F	1,479	P	30,863	F	2,762	Р	3,486	P	2,566	F
Hydrogen	ppmv	1,213		302		442		424		415		477	
Methane	ppmv	ND		ND		ND		ND		ND		ND	
Ammonia	ppmv	ND		ND		ND		ND		ND		ND	
Helium	ppmv	ND		ND		ND		ND		ND		ND	
Fluorocarbon	ppmv	ND	P	ND	P	ND	Ρ	ND	Р	ND	Ρ	ND	P
UNKNOWN Tested by: J. Ford Page	ppmv ckage Thing	18 red/Milled: N	o Lei	ND ad Trim/Bend	t Yes	174 Fixture #. A	706	12 ND: None De	lected	13 1 %v = 10	000 p	14 pmv	
Procedure	ORS SOP MEL-1018: "DLA Land and Maritime Suitability for Military Devices - Internal Gas Analysis".									•			
Prebake	16-24 hours at 100°C. Test at 100°C.												
Test System	HR-IVA® 210s System 8 (EQ-19-002)												
Failure Criteria	Moisture oxygen i	5,000ppm s an intend	iv. Gr	oss Leak F	luoro as in	carbon 50p the sealing	pmv. atmo	Oxygen 10 sphere. Ga	,000p	pmv (1%v itent indica) or gr tive of	eater unle f a leak.	SS

Outgassing protocol

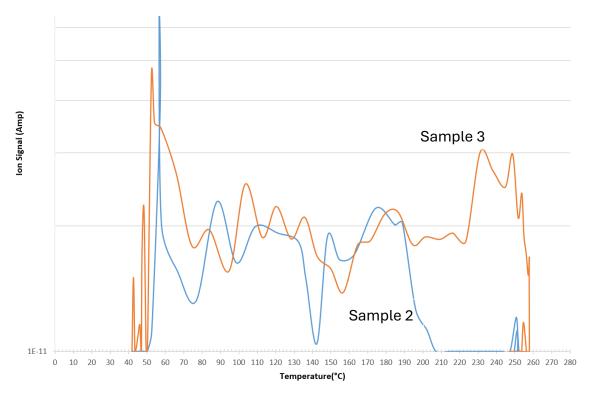

Na	Name			MAX Initial System Pre	ssure (torr)	MAX Time	to Reach System Pressure (s)	MAX System Pressure Allowed (torr)				
				5e-8		30	30			0.00003		
Firs	First Scanned Mass (AMU))			Last Scanned Mass (AM	/IU)	Scan Speed	Scan Speed (ms/AMU)			Repeat Scan every seconds		
1				150		32			30			
St	eps											
#	Disabled	Туре	Target		Rate (°C/min)/Du	ration (min)	Scanning	Duration (min)				
1		Background			10	scans		0.0	1	Add Step -	Û	
2		Ramp	50	°C	2			12.5		Add Step -	Û	
3		Ramp	250	°C	15			13.3		Add Step -	Î	
4		Dwell			30			30.0		Add Step -	Î	
	Save	Clone	Convert to v2					55.8	Delete Procedur	e		

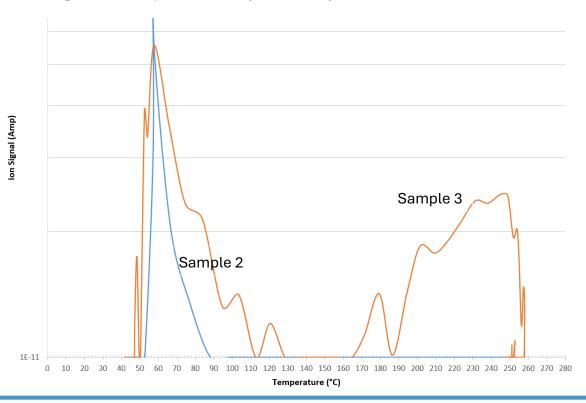
A screen capture of the UI in EVACS[™] used to define heating protocol for the IC samples.



Results

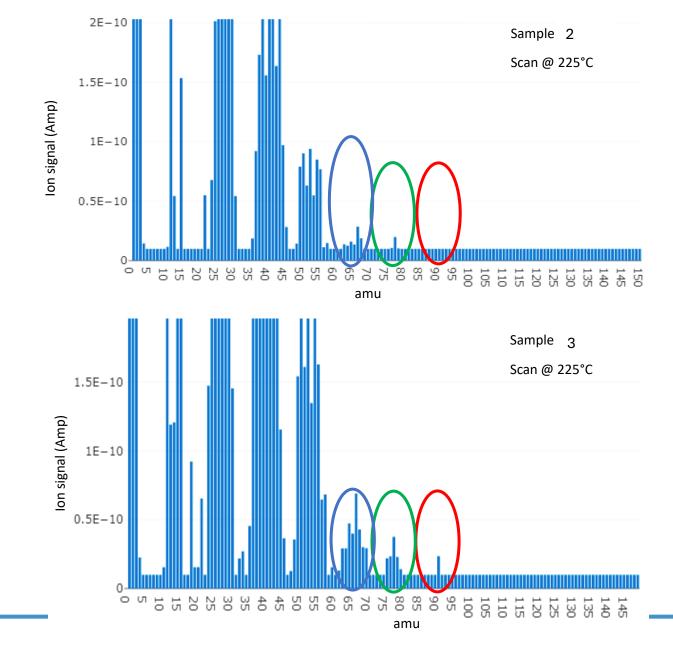
Outgassing of moisture in sample 2 reaches background at ~130°C, for sample 3 moisture outgassing does not reach background until sample reaches 200°C.


As observed for moisture, sample 2 reaches background at ~180°C, for sample 3, outgassing for mass 19 continues until reaches 250°C.

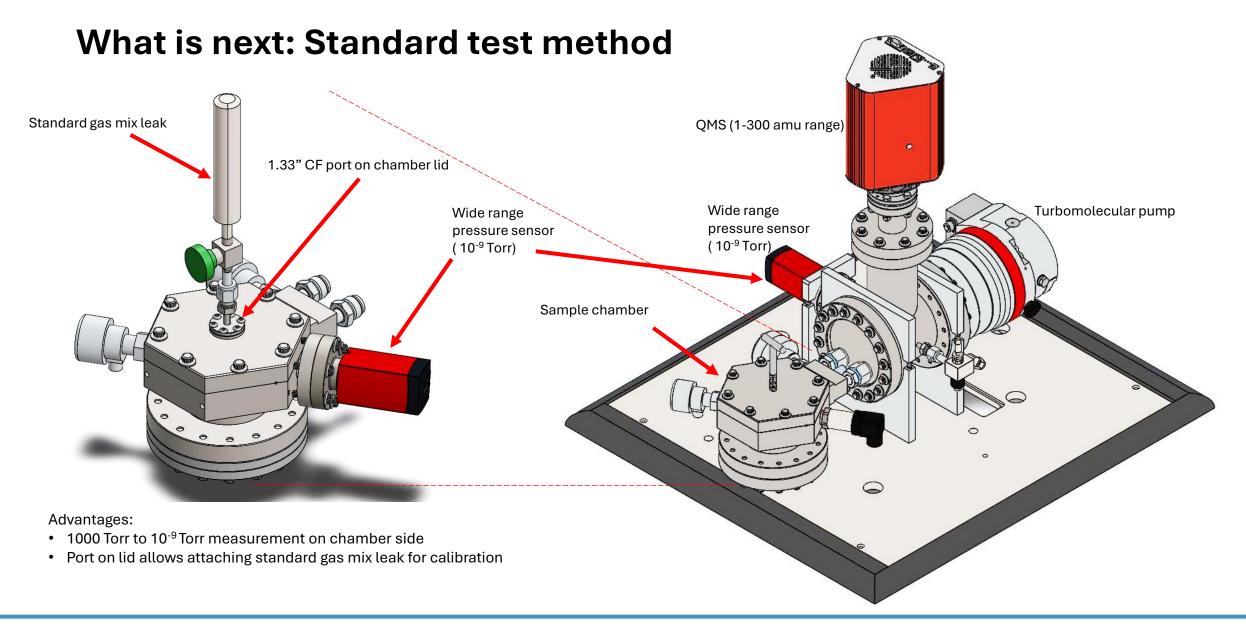


Results

Different outgassing for mass 69 at higher temperature (>130°C -200°C), Outgassing reaches background for sample 2 at 210°C, while sample 3 continue to outgas until 250°C

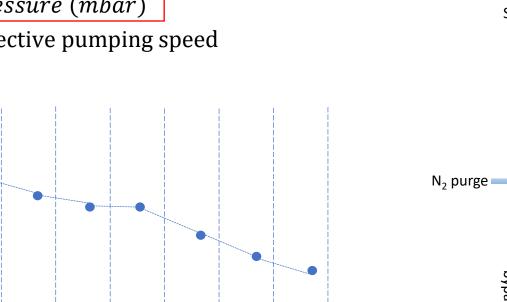


Both the samples show the mismatch of outgassing for mass 91 (commonly observed for adhesive material), sample 2 has marginal outgassing at 65°C, whereas sample 3 has outgassing in two stages (1) at same temperature observed for sample 2, and later at higher temperature (>190°C).



Results

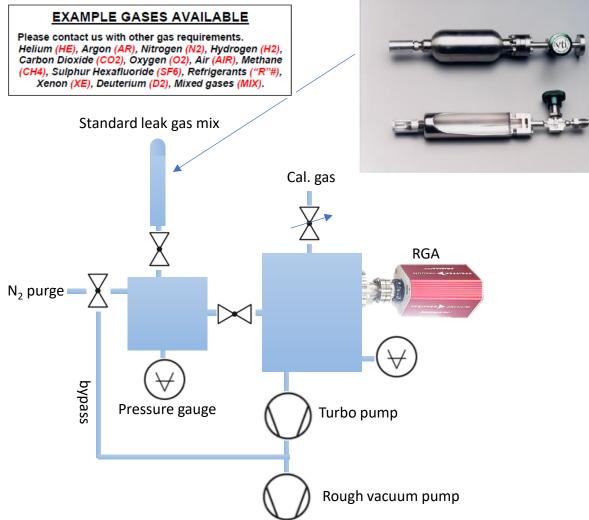
Determination of outgassing rates


 $Q = P \cdot S_{eff}$

 $Q = Outgassing rate (mbar * liter * S^{-1})$

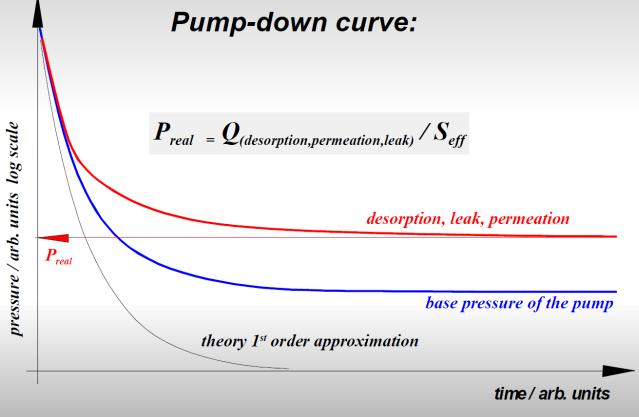
Mass (amu)

P = pressure (mbar)


 S_{eff} = effective pumping speed

CALIBRATED LEAK STANDARDS FOR ALL GASES

CL Capillary Leaks with Reservoir



MS sensitivity ampere/mbar

Determination of outgassing rates

 $Q = P \cdot S_{eff}$ $Q = Outgassing rate (mbar * liter * S^{-1})$ P = pressure (mbar) S_{eff} = effective pumping speed pressure / arb. units log scale P_{real}

Standard test method

10 scans must be taken at the end while material is at max temperature

Outgassing rates are calculated based on the last dwell step (10 scans)

Start testing when total pressure <5E-8 Torr

Load material to UHV-EGA chamber Prior to sample, background test must be taken following same heating schedule.

Copyright © Oneida Research Services, Inc., 2024 All rights reserved. This presentation and its content are protected by copyright laws. Unauthorized use or reproduction of any part of this presentation without prior written permission is strictly prohibited.

Max temp and

heating rate shall

be determined by

the curing and

baking process

Standard test method

Moisture outgassing rate should be calculated using following equation:

 $Q_{H_2O} = I_{H_2O} * S_{eff}$ $Q_{H_2O} = Outgassing rate of moisture in torr. l/s$ we rade ion current at mass 18 for the 10 scans in the last

 $I_{H_20} = Average ion current at mass 18 for the 10 scans in the last dwell step$ $S_{eff} = Effective pumping speed$

The outgassing rate for moisture should be less than 2×10⁻¹⁰ torr/s per gram of adhesive material (either direct or as component of a package). This outgassing rate will release less than 5000 ppmv of moisture if **one gram of adhesive** is sealed in **one cubic centimeter package** in period of **one year**. The validation criteria should be updated based on the actual amount of adhesive, volume of the package and desired time of operation.

