

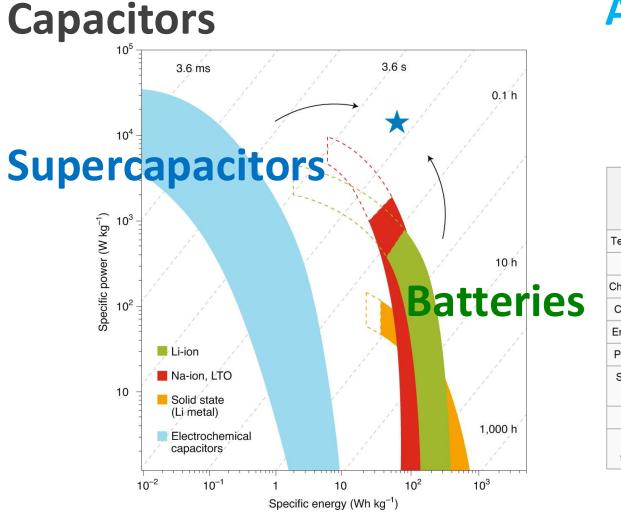
Commercialization of GN3 Graphene Material as the Active Electrode for High Energy Supercapacitors

CMSE 2025

Tomáš Zedníček Ph.D.

EPCI European Passive Components Institute, Czech Republic

Content


- Introduction Why Graphene for SCs
- Novel SC-GN3 Graphene Introduction
- SC-GN3 Manufacturing and Scale-Up
- SC-GN3 Supercapacitor Assembly
- Supply Chain Considerations

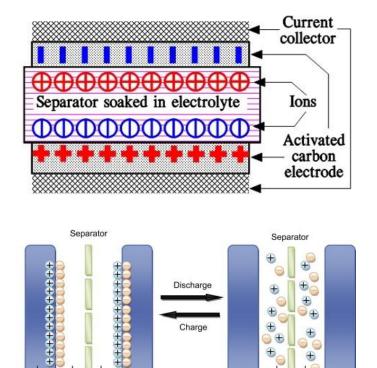
Energy Storage Devices – Energy vs Power Density

Advanced in Energy and Power Storage Density

Parameters of supercapacitors compared with electrolytic capacitors and lithium-ion batteries

	Aluminum	Supercapacitors				
Parameter	electrolytic capacitors	Double-layer capacitors for memory backup	Super-capacitors for power applications	Pseudo and Hybrid capacitors (Li-Ion capacitors)	Lithium-ion batteries	
Temperature range (°C)	-40 to 125	-20 to +70	-20 to +70	-20 to +70	-20 to +60	
Cell voltage (V)	4 to 550	1.2 to 3.3	2.2 to 3.3	2.2 to 3.8	2.5 to 4.2	
Charge/discharge cycles	unlimited	10 ⁵ to 10 ⁶	10 ⁵ to 10 ⁶	2 • 10 ⁴ to 10 ⁵	500 to 10 ⁴	
Capacitance range (F)	≤ 1	0.1 to 470	100 to 12000	300 to 3300	_	
Energy density (Wh/kg)	0.01 to 0.3	1.5 to 3.9	4 to 9	10 to 15	100 to 265	
Power density (kW/kg)	> 100	2 to 10	3 to 10	3 to 14	0.3 to 1.5	
Self discharge time at room temperature	short (days)	middle (weeks)	middle (weeks)	long (month)	long (month)	
Efficiency (%)	99	95	95	90	90	
Life time at room temperature (years)	> 20	5 to 10	5 to 10	5 to 10	3 to 5	

Simon, P., Gogotsi, Y. Perspectives for electrochemical capacitors and related devices. *Nat. Mater.* **19**, 1151–1163 (2020).


Supercapacitor Construction

EDLC Wound Supercapacitor Construction

aluminum capacitors

• Similar assembly technology to

No etched foils (no dielectricum)

Charge

Electrolyte

Negative electrode

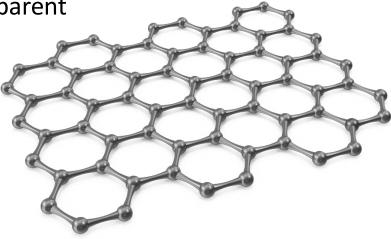
•

÷

Ð 0

Ð

• Ð


Different electrolyte and its function • Connecting Al current collector coated with Terminal activated carbon Negative electrode Aluminum foil/ current collector Capacitor Electrolyte Body Positive electrode Separator

Positive electrode

Graphene as Supercapacitor Active Material

Graphene Properties

- 2D one-atom thick
- 200x stronger than steel
- 3x better electron mobility than silicon
- Lightweight
- Flexible
- Thin
- Large surface area
- High electrical conductivity
- High thermal conductivity
- Transparent

Graphene vs Activated Carbon

- Potentially more conductive / higher power density due to single layer vs two-dimensional lattice features:
 - high electron mobility
 - delocalized electrons with minimal scattering
- Theoretical max capacitance of 2D graphene is higher (>550F/g) than activated carbon
- Easy team up with various other nanomaterials, prominently carbon nanotubes (CNTs), to create lightweight and high-performance structures

Challenges:

- Lower TRL compared to activated carbon
- Supply chain not mature yet
- Electrolyte optimization required to maximize the material potential benefits

Applications

Supercapacitors are Enabling Technology of a Large Number of Industries

Communications

- **Power supplies**
- Back-up power

Ground vehicles

- High-performance power
- Energy recovery systems
- Trains, busses, etc.

Heavy Industry

- Lasers
- Construction vehicles
- Elevators
- Hydraulics smoothing

Energy / Renewables

- Uninterruptible Power Supply (UPS)
- Wind turbines / wave system smoothing

Aircraft

- Back-up power
 - Battery alternative

Robotics / UAVs

- Primary / back-up power supply
- Hydraulics smoothing
- Frequent use robots (logistics, etc.)

Medical devices

- Pacemakers, insulin pumps, hearing aids, etc.
- Primary / back-up power supply

Consumer

- Wearables
- Micro-mobility
- Laptops, Camera flashes ...

- Satellites
- Rockets / thrusters (ignition)

Supercapacitors are ideal in environments that prioritize:

- High power
- High number of cycles
- Fast power cycles
- Safety

Graphene expands the capabilities of supercapacitors by adding high energy density, opening entirely new applications and possibilities...

Supercapacitor Use and Evaluation in Space

"Supercapacitors powered various spacecraft applications, including high-power LIDAR, radars, and actuators. However, COTS supercapacitors face limitations and constraints for space applications.

Target developing **high-energy supercapacitors** (> 15 Wh/kg)

The proliferation of small satellites has made COTS supercapacitors developed for non-space applications relevant to the space community. In the future, graphene-based supercapacitors could enable improved and new services for small satellites, extending their life duration"

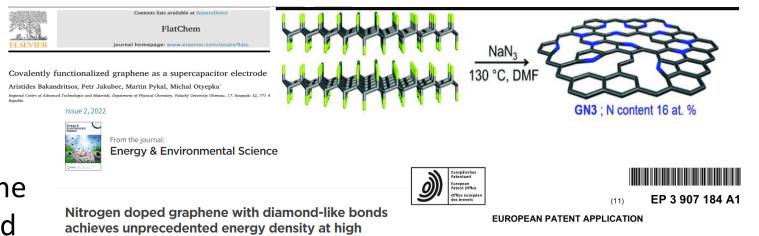
Summary of source: Supercapacitors for space applications: Trends and Opportunities ESA SPCD 2022, ESA ESTEC Geraldine Palissat, Leo Farhat, Joaquin Jimenez Carreira

BOSC based on commercial Maxwell 10F/2.7V small wound cell supercapacitor has been space qualified in 2015 Airbus Defence and Space <u>for radars and</u> <u>pyrotechnics applications</u> – currently still under use. R&T activities necessary to improve power density and high temperature lifetime.

Maxwell 10F/2.7V is also used by various <u>nano-satelites</u>. The main reason for SC use there is to reduce the discharge rate of battery during the peak load and extend the lifetime of battery as well as overall missions.

Principals of SC-GN3 High-Energy & High-Power Storage Capability

developed and patented by:



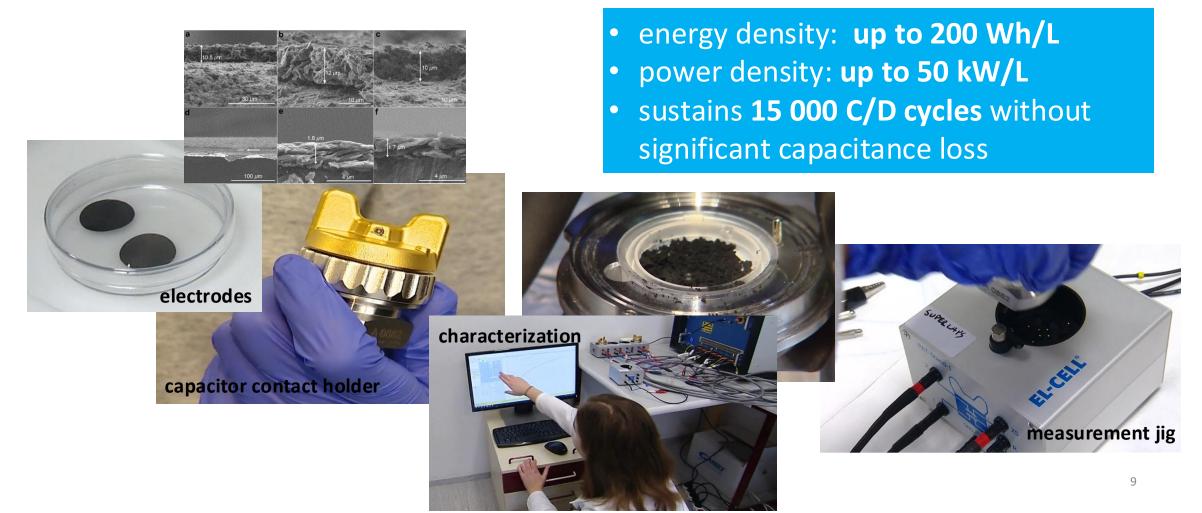
Palacký University Olomouc

- Graphene provides a higher volumetric energy density compared to active carbon
- Graphene doping can significantly alter its electronic structure
- Nitrogen doping imprints active centers on graphene supporting, which can contribute to a certain degree of pseudocapacitance

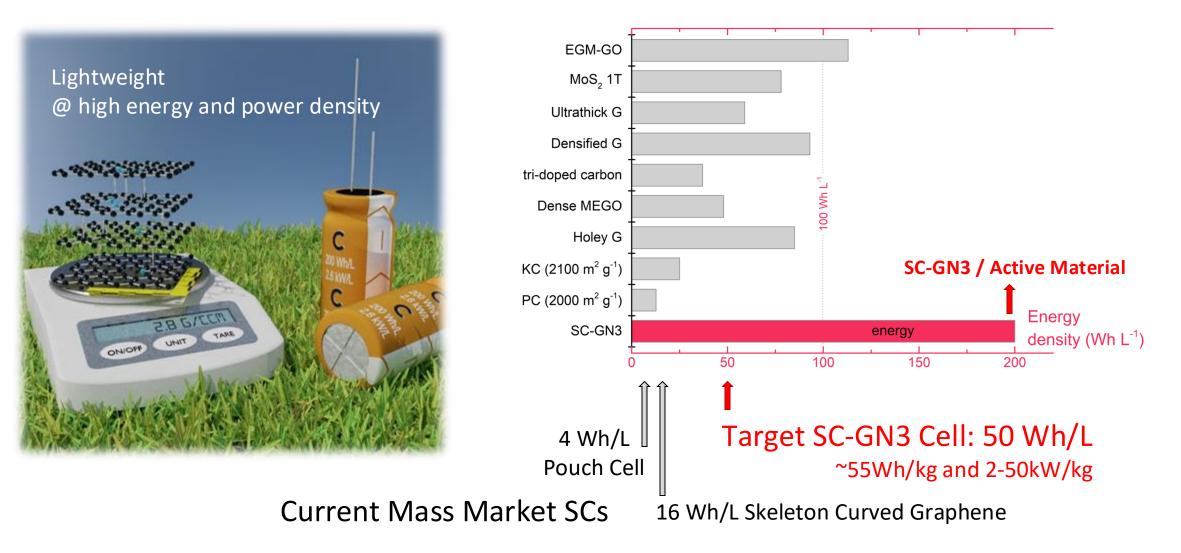
SC-GN3 Material Preparation

 Tunable synthesis of SC-GN3
 highly nitrogen-doped graphene from fluorographene precursor has been developed

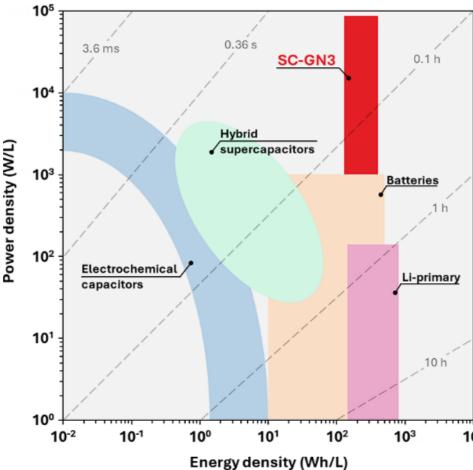
Fluorographene


<u>Veronika Šedajová</u>, ⁽¹⁾ ^{ab} <u>Aristides Bakandritsos</u>, ⁽¹⁾ ^{ac} <u>Piotr Błoński</u>, ⁽¹⁾ ^a <u>Miroslav Medved</u>, ^a <u>Rostislav Langer</u>, ^{ab} <u>Dagmar</u> <u>Zaoralová</u>, ^{ab} <u>Juri Ugolotti</u>, ^a <u>Jana Dzíbelová</u>, ^{ad} <u>Petr Jakubec</u>, ^a <u>Vojtěch Kupka</u>^a and <u>Michal Otyepka</u> ⁽¹⁾ ^{ae}

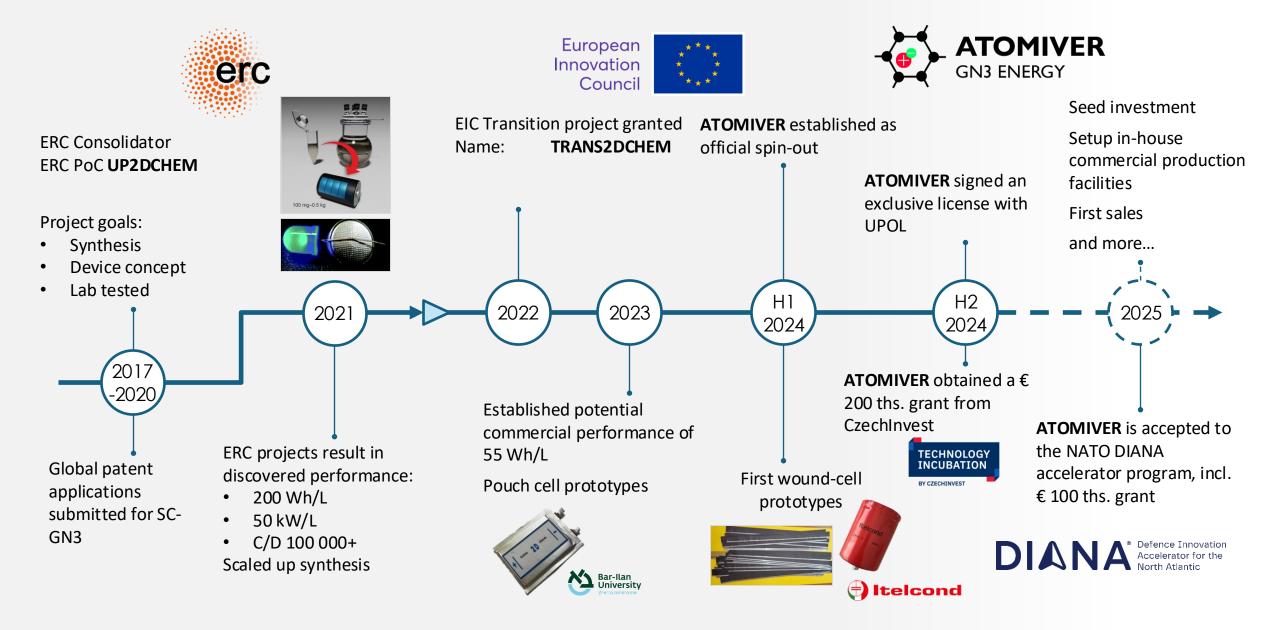
power in a symmetric sustainable supercapacitor*


Highly N-doped Graphene

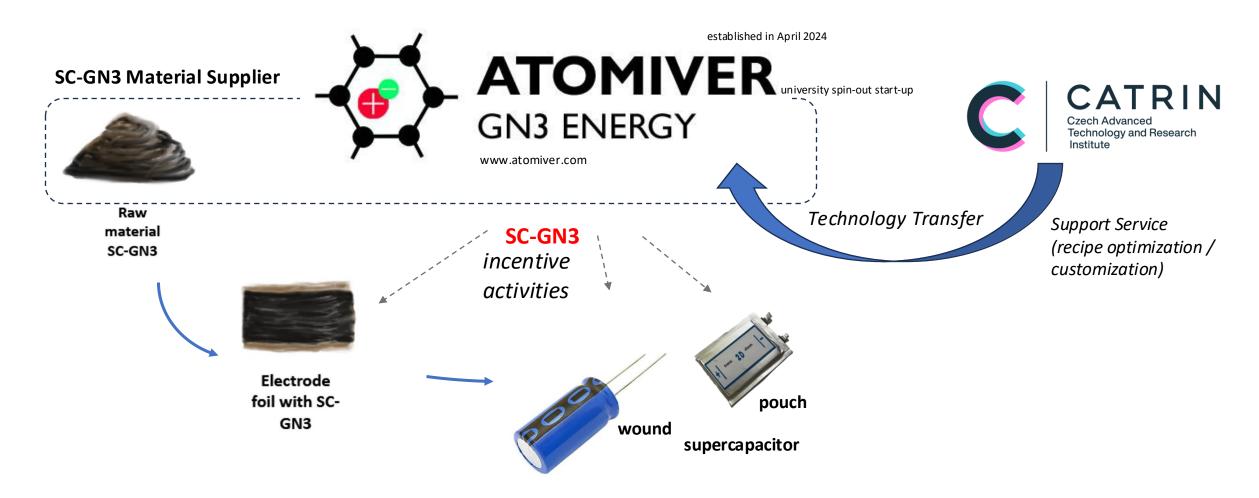
SC-GN3 Development, Testing & Characterization


Features (achieved on material at electrochemical cell)

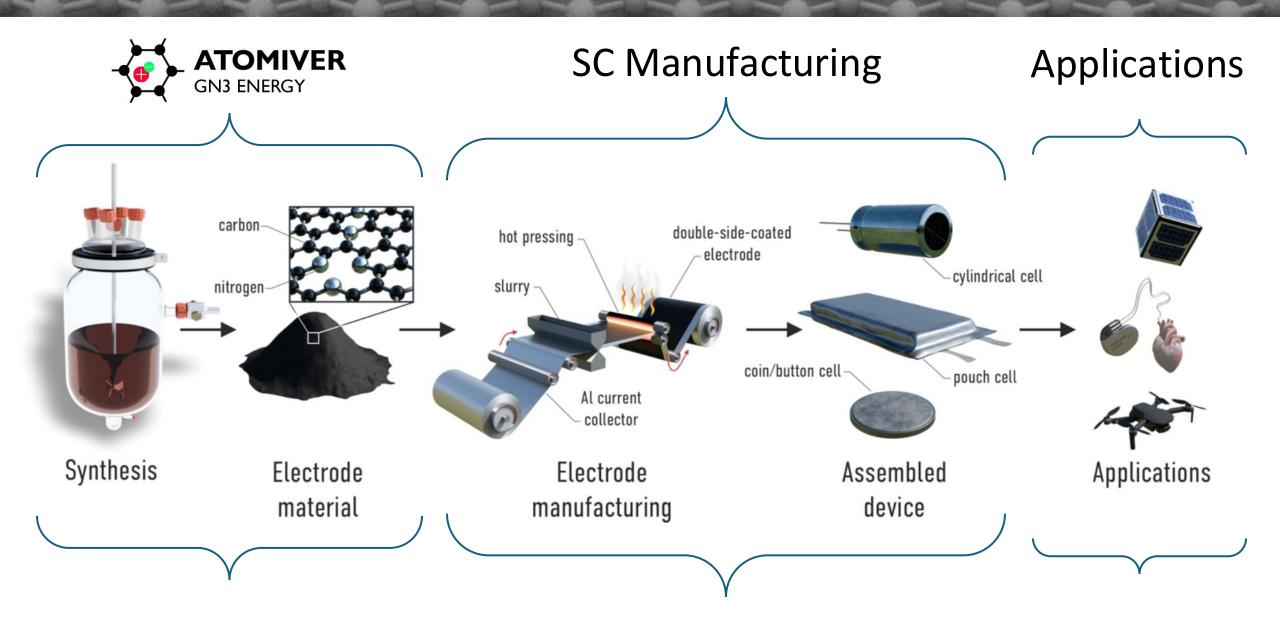
Published Materials


SC-GN3 Bridges the Gap Between Batteries and SCs

Batteries and SCs have always been suitable for specific and different applications - their use always requires some sort of compromise


	Supercapacitors			Li	Li-ion batteries			
eries		•	Safe Relatively more		 Relatively unsafe (thermal runaway risk) 			
1 h		expensive	•	Less expensive	SC-GN3 address one of the key			
primary		•	High power		Limited power (incl. shortened cycle life)	shortcomings of supercapacitors		
^{10 h} 10 h 10⁴	 Low energy density 		•	High energy density				
		 Long cycle life (~ million cycles) 		•	Short cycle life (< 10,000 cycles)			
	 Poor energy retention (hours to weeks) 		•	Long energy retention (months)	1			

SC-GN3 Development & Commercialization (2019-2025)



SC-GN3 Material Commercialization Plan

SC-GN3 Material Commercialization Plan

SC-GN3 Material Supply Chain Mapping

SC-GN3 Material Upscaling Plan

SC-GN3 Graphene Industrial Protocol

- exfoliation of the precursor GF
- synthesis of SC-GN3
- washing of synthesized SC-GN3 material
- desalination resulting in dispersion SC-GN3 in water
- freeze-drying of the SC-GN3 to final SC-GN3 powder

SC-GN3 Wound SC Cell Assembly

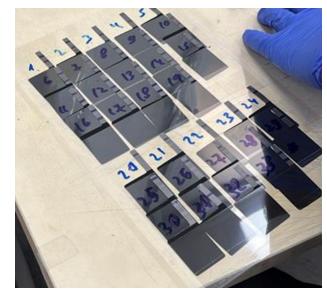
SC-GN3 Wound Cell Prototype Assembly

wound cell assembly scheme, with electrodes and tabs

The layers are:

- Separator
- First electrode
- Separator
- Second electrode

rolled section in a can



SC-GN3 Pouch SC Cell Assembly

SC-GN3 Pouch Cell Prototype Assembly

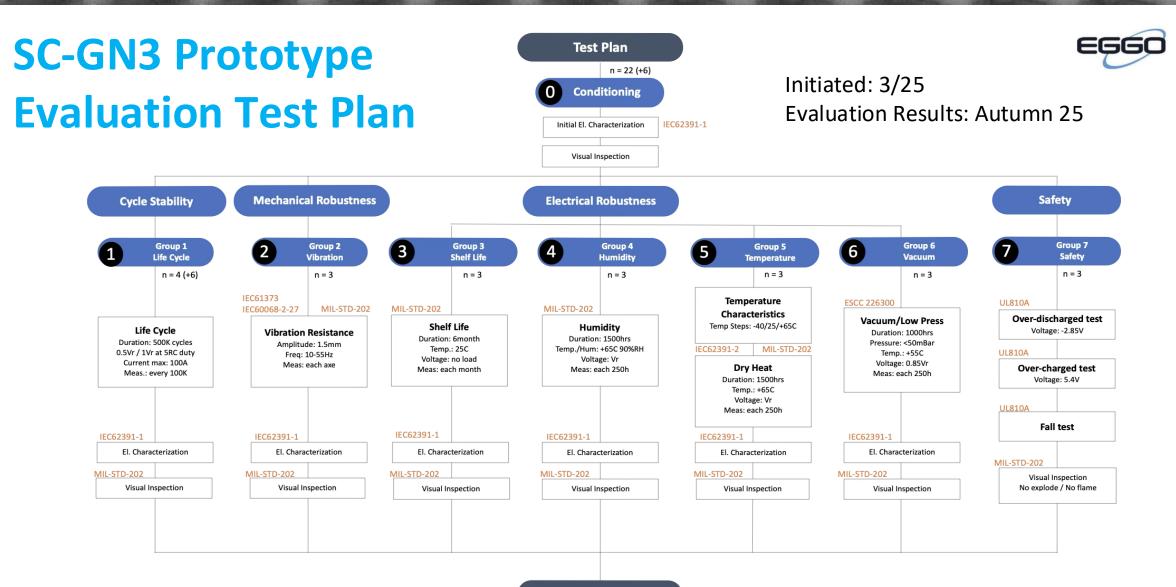
SC-GN3 electrode stamping

Stacked and assembled pouch prototype

500F test module

SC-GN3 Graphene Scale Up and Supply Chain Optimization

SC-GN3 Supply Chain Tasks 2025-2027


Commercialization status

- SC-GN3 technology transferred to Atomiver company spin-off
- Atomiver take over the SC-GN3 material supply chain and further commercialization
- <u>Upscaling from *g* to *kg* material production done</u>
- <u>Reproducibility verified</u> by external manufacturing facility done

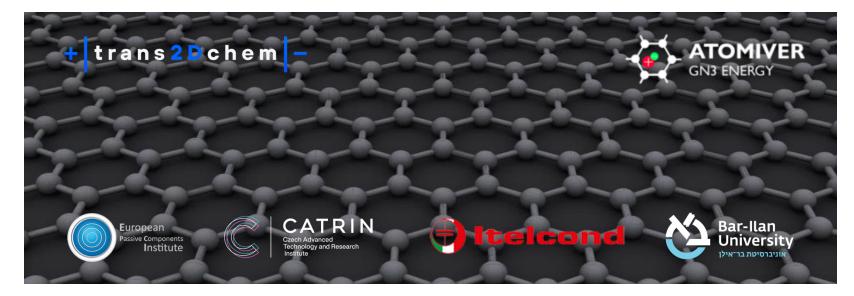
Major tasks for SC-GN3 material manufacturing readiness:

- Ongoing optimization and cost down
- GF raw material suppliers evaluation (USA, China, Czechia under evaluation)
- Expanding manufacturing capabilities up to <u>1 tonne / year</u>
- Pilot manufacturing line under competitive offer stage for production in Czechia
- First prototype wound and pouch samples to be completed in 2025
- Evaluation and Qualification test began Q1/2025 = datapack ready Q3/2025

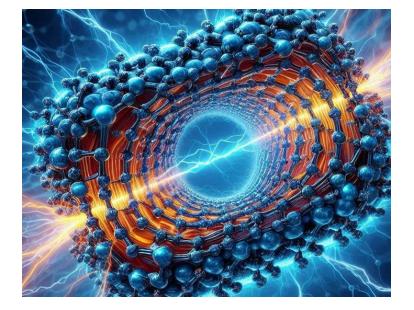
SC-GN3 Wound Cell Prototype Qualification Test Plan

Summary and Conclusion

Start-up company Atomiver has been established as a spin-out from Palacký University Olomouc (CZ), for SC-GN3 graphene material scale-up, production and commercialization.


Aim:

Establish High Energy SC-GN3 Graphene Material Supply Based in Europe


- High energy density target: ~50Wh/L
- Sustainable, reproducible and reliable supply
- Multiple GF precursor suppliers to avoid single source, evaluation of domestic production capabilities ongoing
- Collaboration with SC manufacturers to establish SC manufacturing capabilities in Europe with benefits mainly for aerospace, defense or medical industry

THANK YOU

ACKNOWLEDGEMENT

This work has been supported and enabled by the EIC Transition project entitled "Transition of 2D chemistry-based supercapacitor electrode material from proof of concept to applications" (TRANS2DCHEM) No.101057616 funded by the European Union.

Further information can be found at the project website: <u>https://trans2dchem.com/</u>

contact: www.atomiver.com