Materials and Processes for Non-Hermetic Packaging

Polymers in Semiconductor Packaging

There are some tough material requirements

- Low viscosity to flow (die attach, mold compounds and underfills)
- Wide range of cure profiles
 - Thermal (oven, snap and spot cure) and UV cure
 - Partial cure (B-stage) for printable pastes and films
- Tailored modulus depending on the application
- Low coefficient of thermal expansion (requires fillers)
- High temperature stability for lead-free reflow profiles
- Low moisture absorption (JEDEC pre-con)

Non-Hermetic Packaging Evolution

Non-Hermetic Package Evolution

Source: Infineon

Leadframe Packages

Materials:

Metal leadframe Die attach adhesive (epoxy and maleimide/acrylate) Epoxy mold compound Gold or copper wire

InnoCentrix

IERE SCIENCE IMPACTS BUSINESS

Plastic Ball Grid Array (PBGA)

Materials:

Bismaleimide triazine epoxy substrate Die attach adhesive Epoxy mold compound Gold or copper wire bonded

> Packaging Level 1 – semiconductor encapsulation including substrate

Packaging Level 2 – Printed Circuit Boards

Multiple Polymers Used

- Polymer film redistribution layers
- Bis-maleimide triazine epoxy (BT) laminate used in flip chip substrates
- Epoxy/acrylate soldermask
- Silicones/thermal greases in TIM materials
- Epoxy or cyanate ester/epoxy used in capillary underfills

Flip Chip BGA on HDI Substrate

ASE Package with Integrated Antenna

Printed Circuit Board (PCB) process using advanced low D_k and D_f materials for antenna layer and build up films

Source: Advanced Semiconductor Engineering (ASE)

Overview of Polymers Used in Electronic Packaging

Uses of Polymers in Packaging

- Die attach adhesives
 - Conductive
 - Non-conductive
 - Dispensable paste and film formats
- Underfills
 - Capillary and wafer level (no-flow)
- Mold compounds
- Laminate substrates
 - Base laminate
 - RCC or film redistribution layers for laser via structures

Polymers in Leadframe Packages

Depending on the metal leadframe used, epoxy-based die attach or BMI/acrylate die attach adhesives are used

Mold compounds are typically epoxy-based

Polymers are Key Integration Enablers

What is a Polymer?

From the Greek word poly – meaning many and meros – meaning units

Merriam – Webster online dictionary;

"A chemical compound or mixture of compounds formed by polymerization and consisting essentially of repeating structural units."

As we will see, polymers gain their unique and useful properties by being long molecules with specific chemical repeat units.

Thermoplastics vs. Thermosets

Thermosets expand on heating, but no phase change occurs

Polymers Can Have Different Morphologies

Thermoset crosslinked polymers

Think of the bowl full of spaghetti, but now some of the chains are tied together (crosslinks)

InnoCentr

Thermoset Polymers

Epoxy

Cyanate Ester

Bismaleimide

Acrylate

Examples of Different Network Structures

Epoxy

Cyanate Ester

Bis-maleimide

Morphology has an impact on moisture absorption

Thermosets Offer Wide Processing Range

Monomers/Oligomers

- Low viscosity
- Good flow/dispensing
- Use various monomers to tailor properties
- Reactive diluents to control viscosity

Partially cured

- B-staged
- Film-like properties
- Can still flow with additional heat

Fully Cured Network

- No flow
- Tailored Tg depending on chemistry
- High temp stability
- Controlled CTE

Polymers in Semiconductor Packaging

There are some tough material requirements

- Low viscosity to flow (die attach and underfills)
- Wide range of cure profiles
 - Thermal (oven, snap and spot cure) and UV cure
 - Partial cure (B-stage) for printable pastes and films
- Tailored modulus depending on the application
- Low coefficient of thermal expansion
- High temperature stability for lead-free reflow profiles
- Low moisture absorption (JEDEC pre-con)

Thermoset Polymers

Epoxy

Cyanate Ester

Bismaleimide

Acrylate

Common Reactive Chemistries

Established Technology: not best for very fast curing systems. Chemistry limitations for new increased temperatures demanded by lead free systems.

Competitive technology: fast cure but sensitive to air. Bleed, odour and shelf-life issues. Wide range of commercially available materials.

Excellent potential: fast cure, high extent of reaction and low sensitivity to air. Most commonly used in die attach and in BT epoxy laminates for package substrates. Current range of formulation materials limited.

Common Reactive Chemistries

Epoxy ring opening

Polymerize across

the double bond

- Epoxies, liquid epoxies
- Acrylate monomers, oligomers
- Reactive diluents
 - Acrylates and methacrylates
- Bismaleimides (aliphatic, low viscosity)
- Hybrid resins
 - Dual functionality (i.e. epoxy on one end and acrylate or bismaleimide on the other end)

Epoxy is Most Common Thermoset

Bisphenol A epoxy; X=H, for tetrabromobisphenol A; X- Br

Types of Epoxies

Bis Phenol Epoxy

Cycloaliphatic epoxy

Polymers Used in Electronic Packaging

Advantages

- Extensive chemistry toolbox available
- Tailorable to meet required material properties
 - Glass transition temperature, CTE, modulus
- Process window from liquids (i.e., adhesives, coatings, mold compounds, underfills, etc.) to fully cured solids
- Stable on heating at solder reflow temperatures
- Good chemical resistance
- Disadvantages
- Non-hermetic (absorbs moisture)
- Residual stresses lead to warpage (lower assembly yields)
- Potential for material incompatibility (i.e. polymer-metal adhesion)

Epoxy Mold Compounds

Liquid Mold Compound on Reconstituted Wafer

Source: Nanium

Mold Compounds for FOWLP

- Solid EMC
 - Hitachi
 - Sumitomo
- Liquid EMC
 - Nagase
 - Panasonic

 Film Type (Embedding Insulation Sheet (EBIS) – Hitachi Chemical

EMC Compression Molding Process

3 Clamp

4 Release

5 Film Peeling

Reconstituted Wafer Example

Source: Nanium

Reconstituted wafer after carrier release

Mold Compound Technology

- Epoxy cresol nolovak mold compounds (EMC)
 - Phenol novolak cured
 - Ease of processing, flow, molding
 - Good adhesion, small shrinkage
 - Chemical and moisture resistance
- Biphenyl mold compounds
 - Low viscosity for wire sweep control
 - High filler loading
 - Lower moisture absorption
- Multifunctional mold compounds
 - Mixture of biphenyl and multifunctional resins
 - High Tg
 - High filler content (rounded fused silica)

Typical Mold Compound Formulation*

Component	Chemistry	Amount
Epoxy Resin	Epoxy Cresol Novolak	5-15%
Curing Agent	Phenolic Novolak	5%
Accelerator	Imidazoles	
Fillers	Silica filler	65-75%
Flame retardant	Brominated epoxy**	5%
Adhesion promoters	Epoxy silanes	
Parting agents	Synthetic waxes	
Proprietary additives	Flexibilizers (stress control)	
Pigments	Carbon blacks	

* Reference: S. Komori and Y Sakamoto, Materials for Advanced Packaging, Chapter 10, D. Lu and CP Wong, Editors, Springer, 2009
** The use of halogens is being eliminated in next generation "green" mold compounds

Chemistry of Epoxy Mold Compounds

Epoxy novolak

Epoxy cresol novolak

Mold Compound Chemistry

Dicyclopentadiene type novolak epoxy

Biphenyl type epoxy

 H_3C H_3C H_3C H_3C H_3C CH_3 CH_3 CH_3

Ortho methyl groups (-CH₃)

Steric hindrance around epoxy linkage lowers moisture absorption

Next Generation EMC

- Add Multi Aromatic Resin (MARs) into the base epoxy cresol novolak/phenol novolak
- Lower the high temperature elastic modulus by decreasing the crosslink density
 - Longer polymer chains between crosslinks
- Lower moisture absorption
 - Addition of hydrophobic aromatic rings

Next Generation EMC*

* Reference: S. Komori and Y Sakamoto, Materials for Advanced Packaging, Chapter 10, D. Lu and CP Wong, Editors, Springer, 2009

PAN

Fillers Play a Key Role in Lowering CTE

Coefficient of Thermal Expansion

Source: W. Sun Lee, J. Yu, Diamond & Related Materials, vol. 14, p.1647-1653 (2005)

Aspect Ratio Impacts Viscosity

Filler Packing for a Bimodal PSD

InnoCentrix

Particle Size Ratio

• $\alpha = 2$ • $\alpha = 5$

 $\alpha = \frac{d_L}{d_S} = \frac{diameter\ large}{diameter\ small}$

Pillitteri, S., Lumay, G., Opsomer, E. *et al.* From jamming to fast compaction dynamics in granular binary mixtures. *Sci Rep* **9**, 7281 (2019). <u>https://doi.org/10.1038/s41598-019-43519-6</u>

Filler Packing for a Bimodal PSD

- Maximum packing density when the volume fraction (f) of the smaller particles is ~ 0.3, when using ideal mono-size powders
- Effect is more pronounced when increasing the size ratio α

Pillitteri, S., Lumay, G., Opsomer, E. *et al.* From jamming to fast compaction dynamics in granular binary mixtures. *Sci Rep* **9**, 7281 (2019). <u>https://doi.org/10.1038/s41598-019-43519-6</u>

Epoxy Mold Compound Filler Loading

Diameter of the filler	Filler Content		
R	100%	91.5%	
0.414R	0	6.5%	
0.225R	0	1.85%	
Schematic illustration of filler packing	Porosity: 29.5%	Porosity: 19.0%	

Source: Sumitomo

Use "generational" packing to increase the packing density

Advanced Underfills

Challenges with Capillary Underfill

Flow issues with capillary underfills

- Cu pillar pitch is going to $< 35 \mu$
- Pillar diameter is moving < 30 μ

Underfill Material Drivers

- Optimize for stress control (warpage)
 - Tailor the Tg and modulus
- High modulus (around 10 GPa)
- Mid-range Tg (around 90°C)
- Low CTE (target < 25 ppm/°C)
- Low cure temperature (stress control)
- Low cure shrinkage (stress control)
- Tailored rheology depending on application
 - Flow speed
 - Good wetting to chip & substrate
 - Good adhesion to chip & substrate

Capillary Underfill Formulation Challenge

- Needs to flow under die using capillary force
 - Requires low yield point (or no yield point)
- Required to have low CTE for stress management
 - Achieve low CTE with high filler loading
 - High filler loadings increase the yield point, viscosity, and potentially develop thixotropy
- Ideal capillary underfill has very low yield point and exhibits Newtonian viscosity after dispense
 - Silica has small filler-filler interaction parameter
 - Surface treatment can reduce particle agglomeration
 - Low viscosity monomers/diluents used in resin component

Capillary Underfill Flow Considerations

Hele-Shaw model for underfilling time:

$$t_f = \frac{3\eta L^2}{\sigma h(\cos\theta)}$$

- L= chip length
- θ = contact angle
- h= gap height
- $\eta = viscosity$
- σ = surface tension

From this relationship we can see that filling time decreases when:

- L and η decrease
- h and σ <u>increase</u>

Capillary Underfill Flow Considerations

- The packing trend is to smaller gap height (lower h) with tighter bump pitch
- Low CTE requirements (i.e., addition of fillers) impacts flow
- Design challenges:
 - Reduce viscosity (use temperature and molecular design)
 - Fillers play a key role in viscosity
 - Increase surface tension (better wetting leading to faster flow)
 - As die size increases, keep h as large as possible

Capillary Underfill Formulations

Resins and hardeners

- Liquid Bis F epoxy amine ٠
- CH2-CH-CH2 Liquid Bis F epoxy – anhydride
- **Biphenyl epoxy** •

Liquid cyanate ester – metal coordination catalyst

•

O-CH2

Formulation Components

- Latent Hardeners (flow first then cure)
 - Anhydrides (generate fluxing in-situ)
 - Liquid primary aromatic amines (DETDA)
 - Hindered primary aliphatic amines (isophorone diamine, IPDA)
- Catalysts
- Fluxing agents
 - Carboxylic acids, sulfonic acids, hydroxyl containing agents
- Reactive diluents
- Adhesion promoters such as silanes
- Surface energy modifiers
- Flow modifiers, defoaming agents, tougheners

Reactive Diluents Play Dual Role

in Blends with EPON™ Resin 828

Control the viscosity before curing

Multifunctional Reactive Diluents

- Heloxy 505 is a large tri-functional reactive diluent
- Excellent for increasing toughness and impact resistance

- Heloxy 68 is one of the most common reactive diluents for epoxies
- Small, di-functional molecule that retains properties well

Fillers

- Non-conductive, electrically insulating
 - Fused silica is widely used; high purity, chemical resistance and low coefficient of thermal expansion (CTE)
 - Spherical fused silica is the most common filler
 - Used in high filler loadings (> 65 wt%)
- Surface treatment is key
 - Lower viscosity
 - More Newtonian flow behavior
 - High filler loadings

Source: Sumitomo

Filler Loading Controls Viscosity

Uncured model epoxy formulation with various filler aspect ratios

InnoCentrix

CTE as a Function of Volume Percent

W. Sun Lee, J. Yu, Diamond & Related Materials, vol. 14, p.1647-1653 (2005)

Silica Filler Loading Impacts Flow

Viscosity increases dramatically with filler loading

Measuring Underfill Flow Time

Filler Packing for a Bimodal PSD

- Maximum packing density when the volume fraction (f) of the smaller particles is ~ 0.3, when using ideal mono-size powders
- Effect is more pronounced when increasing the size ratio α

Pillitteri, S., Lumay, G., Opsomer, E. *et al.* From jamming to fast compaction dynamics in granular binary mixtures. *Sci Rep* **9**, 7281 (2019). <u>https://doi.org/10.1038/s41598-019-43519-6</u>

Narrow Gap Underfills

Namics Molded Underfill

New technology: LCMUF Liquid Compression Mold Under Fill

Eliminate process step and utilize compression molding equipment (used for fanout processes)

Source: Namics

Namics Molded Underfill

				Fine filler type
ltem		Unit	XLM8901-53A	XLM8901-185
Filler	Content	wt%	84	77
	Mean size		1.7	0.3
	Top cut size	um	5	1
Viscosity	25C, 10rpm	Pa.s	220	130
Tg	DMA	С	154	129
CTE	< Tg	ppm/C	13	23
	> Tg		31	43
Storage modulus	< Tg	GPa	14.0	11.0
	> Tg		2.0	2.0

Test wafer information (Mold thickness: 450 um, Die: w/) 🗌 : Si die w/ bump Die w/ bump Die size: 10 mm x 10 mm Die thickness: 300 umt Bump material: Cu pillar 12 umt + SnAg 8 umt Pitch: 40 um Bump layout: Area array Passivation: SiN (Die w/o bump is attached by cured resin on wafer.) No Title Die layout Wafer 10 mm 10 mm Wafer size: 12 inch Wafer thickness: 775 um Pad material: Cu 3 umt Passivation: SiN

Test conditions

Equipment: CPM1080 made by TOWA Compression force: 37 ton Molding temperature: 120 C Molding time: 600 sec PMC condition: 150 C / 1 h

Warpage data

Cross section image at center of die

Source: Namics

Recent Advances in Advanced Packaging

- Fan Out Wafer Level Packages (FOWLP)
- Fan out Panel Level Packages (FOPLP)
- Antenna in Package for 5G
- Ultra low loss substrates

Embedded Wafer Level Packaging (eWLP)

Polymers Used In Wafer Level Packaging

Polyimide (or photosensitive (PSPI))

Polybenzoxazole (PBO))

Fan-Out Wafer Level Process Flows

Face Down Die First	Face Up Die First	Face Down Die Last
Face-down die attach	Face-up attach Cu-stud die	RDL on carrier
Molding	Molding	Face-down attach, reflow
Carrier removal	Expose Cu studs	Molding
RDL and ball attach	RDL and ball attach	Carrier removal
	Carrier removal	Ball attach
		Source: SPI

InnoCentrix

WHERE SCIENCE IMPACTS BUSINESS™

Chip First Planarity Issue

DECA Chip First Face Up

Reconstituted Wafer Process

Metal Carrier
Adhesive Foil
Chip with Pads
Mold Compound

Carrier with Foil and Chips

Molding with

Liquid Moldcompound

Carrier (Metal Plate)

Reconstituted Wafer after Molding

Fan Out Wafer Level Package Process

Antenna Integration for 5G mmWave

Material Drivers for AiP

- Very low Df primary driver
 - Needs to be < 0.002</p>
- Low Dk secondary
- Film format drop-in PCB-like process
 - Lamination capable, i.e. flowable film during lamination
- Laser ablation capable
 - Form via's
 - CO2, excimer and Nd:YAG
 - Via walls capable to accept semi-additive plating

ASE Package with Integrated Antenna

Antenna is a key area for packaging innovation

Printed Circuit Board (PCB) process using advanced low Dk and Df materials for antenna layer and build up films

Antenna Gain

$$G(\vartheta, \varphi) = D(\vartheta, \varphi) * e_{diel.} * e_{cond.} * e_{mat.}$$

Courtesy Dr. Ivan Ndip, Fraunhofer IZM

Antenna Gain

Directivity

 $D \propto \frac{1}{\sqrt{\varepsilon r}}$

Lower ϵ_r to increase gain

Dielectric Efficiency

Lower Df increases dielectric efficiency Conductor efficiency and impedance matching

Lower both the Dk and the Df to increase antenna gain

Courtesy Dr. Ivan Ndip, Fraunhofer IZM

Antenna Radiation Efficiency

Higher is better

Courtesy Dr. Ivan Ndip, Fraunhofer IZM

InnoCentrix

HERE SCIENCE IMPACTS BUSINESS

Transmission Loss

 $\propto 27.3 \frac{F}{c} \sqrt{Dk}$ Df $\propto \sqrt{F} \times R$

F=frequency C = speed of light Dk = dielectric constant Df = dissipation factor R = conductor resistance

Transmission Loss

To reduce the transmission loss...

- Low dielectric loss tangent (Df)
- Low dielectric constant (Dk)
- Low smooth surface at the interface between resin and conduct layer
- Good adhesion strength with smooth surface

InnoCentrix

HERE SCIENCE IMPACTS BUSINE

Thinner layer

Adhesion of smooth copper to laminate is critical

Ideal 5G Dielectric

Need both for a successful new product

InnoCentr

Design of Low Dk/Df Dielectric

There are two strategies:

- 1. Decrease dipole strength
 - Use materials with low polarizability
 - Symmetric orientation of dipole moments

- 2. Decrease the number of dipoles
 - Lower the density of a material by increasing free volume
 - Introducing porosity (thermally volatile second phase)

Design Strategies

Use the following design approaches to reduce Df:

- Minimize presence of polar groups (dipoles) such as hydroxyl (-OH), carboxyl (-COOH), amide (-CONH-)
 - Also, will increase moisture absorption which increases Dk
- Add fluorine (-F), methylene (-CH2-), and alicyclic groups such as cyclohexyl
 F
 F
- Helical chain structure
 - Symmetric dipole moments

• Introduce fluorine, phenyl, naphthyl

Specialty Thermoset Low Dk/Df Materials

- PTFE: Rogers 3003 (ceramic filled PTFE)
- Nelco N4000 series (i.e. N4350-13RF, Df=0.0065)
 - Modified epoxy
- Modified epoxies
 - Isola GETEK[®] and Panasonic Megtron[®]; modified epoxies with functionalized polyphenylene oxide (PPO to lower Df)
- Cyanate ester epoxy blends
 - Nelco N8000 series (low polarity)
- Cyanate esters (Df = 0.008)
 - Low polarity due to cyclotrimerization mechanism

Cyanate Ester Chemistry

AGC Low Df Laminates and Prepregs

- AGC (formerly Asahi Glass Co. in Japan) See: <u>https://www.agc-multimaterial.com</u>
- PTFE systems
 - PTFE glass (ex. TLY-5A, lightweight woven fiberglass)
 - PTFE ceramic (ex, NF-30, ceramic-filled composite)
- Meteorwave® PPE/Modified Epoxy
 - Poly(phenylene ether) (PPE) modified epoxy
 - Meteorwave® 8000 Ultra low loss PPE (Df = 0.0016 @ 10 GHz)
 - Spread weave fiberglass, amorphous silica filler (7-15%)

Recent Isola Low Df Offerings

Astra® MT77 (target mm wave frequencies and beyond)

- Very low loss laminate and prepreg
- Dk = 3.00 / Df = 0.0017
- Tg = 200°C

Tachyon® 100G

- Ultra low loss laminate and prepreg
- Dk = 3.02, Df = 0.0021
- − Tg = 200°C

TerraGreen®

- Halogen free, very low loss laminate and prepreg
- Dk = 3.44 / Df = 0.0039
- $Tg = 200^{\circ}C$

Dk/Df of Glass Reinforcements

Reinforcement impact, i.e., predominantly glass cloth

Reinforcement	D _k @1 MHz	D _k @ 1 GHz	D _f @ 1 MHz	D _f @1 GHz
E-Glass	6.6	6.1	0.0020	0.0035
NE-Glass	4.4	4.1	0.0006	0.0018
S-Glass	5.3	5.2	0.0020	0.0068
D-Glass	3.8	4.0	0.0010	0.0026

Glass has low Df

AGC Glass Laminates

		BCDR	
Extremely low loss laminate with NE glass	Freq. / GHz	Dk	Df
	14	3.07	0.0011
	28	3.07	0.0013
	40	3.07	0.0015
Eutrope du la cula a	Freq. / GHz	Dk	Df
Extremely low loss	14	3.05	0.0009
glass	28	3.05	0.0011
	40	3.05	0.0012
	Freq. / GHz	Dk	Df
Extremely low loss	14	3.01	0.0009
glass	28	3.01	0.0011
	40	3.01	0.0012

Source: AGC presentation at IMAPS 2023

AGC Laser Processability

Multiple woven glass fabrics used, typically spread fiberglass

Properties of AGC ELL Halogen Free (HF)

Property	Item	Typical value	Unit
	Tg	190	°C
	CTE, Z-axis	42	ppm/°C
Thermal	Z-axis Expansion	2.4	%
	Td (5%)	410	°C
	T300	120+	min
Electrical	Dk	3.4	
	Df	0.0013	
	Peel Strength	3.5	lbs/in
Physical	Flexural Strength	290	MPa
	Flame Resistance	V-0	

AGC Next Generation for Chip Packaging

RC%=70.0 (1078SI)

Low Dk filler (vol%)

	Solid Silica	Low Dk filler
Dk	4.0	1.5
Df	0.001	0.001
D ₅₀ (μm)	2-5	2-3

Source: AGC presentation at IMAPS 2023

nnn Cent

Non-Hermetic Coatings

- Material Properties:
 - low stress coatings that resists mobile ion permeation and moisture ingress are desirable
 - Resistance to degradation of the interfacial adhesive strength and delamination
- Types of Coatings:
 - Silicone elastomers
 - High purity epoxies
 - Room temp vulcanized
 - (RTV) silicones
 - Fluorinated silicones and acrylics
 - Parylenes with bi-layer and tri-layer designs

Moisture Barrier Coatings

- Low moisture absorption and permeability
- Processing characteristics and thermal profiles before and after coating
- Adhesion of coating to package
- Avoid cracks, pin holes, interfaces, moisture paths and capillary action
- Coating thickness, density, fillers
- Effect of temperature on coating moisture properties (i.e.Tg)
- Degree of cross linking and polarity of the coating
- Interactions between the coating and the migrating species
- Cleanliness of the applied coating
- Surface cleanliness and texture prior to coat

Parylene

- Vacuum-deposited hydrocarbon coating
- Thicknesses from Angstroms to mils, typically in micron range
- Good combination of electrical and physical properties
- Very low permeability to moisture and volatiles

Parylene Vacuum Deposition Process

Source: Advanced Coating (parylene conformal coating specialist) <u>www.advancedcoating.com/depositionprocess</u>

InnoCent

HERE SCIENCE IMPACTS BUSINESS

Parylene Vacuum Deposition Process

Phase 1 - Vaporization

The dimer is added to the Vaporizer and is heated to 75-250°C depending on application and Parylene type. The dimer turns from a powder into a vapor.

Phase 2 – Pyrolysis

The Dimer is heated in the furnace at 600 – 700 °C and becomes a monomer.

Phase 3 – Deposition

Dimer turns into a polymer that adheres evenly as transparent Parylene film to the components inside the coating chamber at ambient temperature.

The Parylene coating process does not include any liquid phase and there is **no traditional curing time involved**.

Source: Advanced Coating (parylene conformal coating specialist) <u>www.advancedcoating.com/depositionprocess</u>

Parylene Vapor Deposition Monomers

InnoCent

NHERE SCIENCE IMPACTS BUSINESS

Parylene Coatings

Advantages of Parylene

- · Able to coat a variety of substrates
- · Uniform with no pooling/voids
- Stress free application
- Low dielectric constant

- · Optical clarity/transparency
- Excellent electrical insulation
- Excellent chemical and moisture barrier
- High dry-film lubricity

- · Environmentally safe
- · Extremely thin
- · Pinhole and defect free
- · Biostable and biocompatible

R KUMAR SCS COATINGS IMPAS 2012 NON-HERMETIC PACKAGIING CONF

Parylene Conformal Coating to 1 micron

R KUMAR SCS COATINGS IMPAS 2012 NON-HERMETIC PACKAGIING CONF

Parylene Manufacturing Options

- Commercial services are available to coat product in volume.
- Users can purchase equipment and operate processes themselves.
- Parylene has a good track record and is in common use throughout both the electronics and medical device industries.

Polyimide Film Applications

100

Source: Polyimide Film ---- Market Estimates & Trend Analysis Nov 2017 by Grandview Research

InnoCentrix NHERE SCIENCE IMPACTS BUSINESS

Polyimide Suppliers

- DuPont-Toray (Japan)
- Ube Industries (Japan)
- SKC Kolon PI (South Korea)
- Kaneka Corporation (Japan)
- Taimide Tech Inc. (Taiwan)
- Arakawa Chemicals Industries, Inc. (Japan)
- Shinmax Technology Ltd. (Taiwan)

Double Layer FCCL

Double-layer

- IPC-6013, MIL-P-50884 Type 2
- Two conductive layers with an insulating layer between them; outer layers may have covers or exposed pads.
- Plated through-holes provide connection between layers.
- Access holes or exposed pads without covers may be on either or both sides; vias can be covered on both sides.
- Stiffeners, pins, connectors, components are optional.

Multilayer FCCL

Multilayer

- IPC-6013, MIL-P-50884 Type 3
- Three or more flexible conductive layers with flexi insulating layers between each one; outer layers may have covers or exposed pads.
- Plated through-holes provide connection between layers.
- Access holes or exposed pads without covers ma be on either or both sides.
- Vias can be blind or buried.
- Stiffeners, pins, connectors, components are optional.

Rigid Flex

Rigid-flex

- IPC-6013, MIL-P-50884 Type 4
- Two or more conductive layers with either flexible or rigid insulation material as insulators between each one; outer layers may have covers or exposed pads.
- A Rigid-flex has conductors on the rigid layers, which differentiates it from multilayer circuits with stiffeners. Plated through-holes extend through both rigid and flexible layers (with the exception of blind and buried vias). Rigid-flex costs more than a standard circuit with stiffeners.

- Access holes or exposed pads without covers may be on either or both sides. Vias or interconnects can be fully covered for maximum insulation.
- Stiffeners, pins, connectors, components, heat sinks, and mounting brackets are optional.
- We also manufacture "flush" rigid-flex, where the top surface of contact areas is level with adjacent adhesive/insulation.
- Minco is capable of sequentially laminating, drilling, and plating circuits, which allows for more flexibility in designing the circuit.

Adhesives Used in Flex

All Polyimides are not created alike!

Two types of polyimides:

- 1. Addition polyimide (this what the PCB mfg's call high Tg polyimide)
 - Component of BT
 - Isola has a strong presence in high Tg polyimides
 - Available as prepreg and CCL
- Condensation polyimide (DuPont Kapton[™] and Ube Upilex[®])
 - Films used in flex circuits
 - Films used in rigid-flex circuits
 - Specialty film applications

Polyimides

Condensation Polyimides

Chemical reaction to form polyamic acid allowing processing (spin coating or casting)

DuPont Kapton[™] is PMDA ODA

Chemical reaction to form highly rigid, polyimide films like DuPont Kapton[™]

Polyimide Chemistry Toolbox

Dianhydrides

Diamines

DuPont Kapton[™] Chemistry

Pyromellitic dianhydride (PMDA) 4,4' diaminodiphenyl ether oxydianaline (ODA)

DuPont Kapton[™] Films

Kapton polyimide films come in several types, each with unique properties and applications. Commonly used types include:

- <u>HN</u>: A general-purpose, transparent polyimide film with a good balance of properties across a wide temperature range.
- <u>FN</u>: HN film coated on one or both sides with a fluoropolymer resin, providing heat sealability, a moisture barrier, and enhanced chemical resistance.
- EN: A low CTE film designed to match copper's thermal expansion, ideal for flexible printed circuits and high-density interconnects.
- B: A matte black film offering exceptional physical, chemical, and electrical properties across a broad temperature range.
- FPC: Films with higher dimensional stability and surface modified for improved adhesion.

Upilex[®] Polyimide Chemistry

Kapton[™] and Upilex[®] Comparison

Ube Upilex[®] Films

- Hig heat resistance up to 300C
- Excellent toughness and abrasion resistance
- Used where high strength films are required
- Excellent chemical resistance to organic liquids
- Very good electrical resistance
- Ube's proprietary polyimide film surface layer functionalized to enhance adhesion
- Note: Upilex polyimides have lower atomic oxygen erosion compared with Kapton and thus are potentially more suitable for harsh space environments

Ube Upilex[®] Films

- Upilex $^{\mathbb{R}}$ S
 - Basic grade
 - High rigidity and heat resistance
 - Low outgassing, excellent surface smoothness, chemical resistance
- Upilex[®] VT and Upilex[®] NVT
 - Thermally bondable film
 - Thermally bondable polyimide adhesion layer on both surfaces
 - Base polyimide film properties equivalent to Upilex[®] S
- Upilex[®] SGA
 - Improved adhesion for sputtering and plating
 - Specially treated Upilex[®] S

Drawbacks of Polyimides

- High cost (material and process)
 - After spin coating PI films, imidization requires very high temperatures in the range of 300-325°C
 - Typically limited to thin films since water is produced during imidization
- Metal adhesion can be a challenge
 - Tie layer metals for polyimide coatings often include chromium or titanium to improve adhesion between the polyimide and metals like copper and gold.
- Moisture absorption
 - Leads to metal corrosion, package cracking, degradation of dielectric properties
- Susceptible to attack by concentrated acids and alkalis
- Limited impact strength

Kapton[™] Film Failure Mechanisms

- Delamination of Kapton as insulative layer or interlevel dielectric from conductive metals, e.g. Ti, Al, Ta, etc., due to aging and fatigue
- Charge transport through the dielectric film, some types
 more prone to this than others
- "Hard" films on "soft" substrates have difficulty recovering from large deformations and can be prone to fracture...this can apply to metal on Kapton[™] or Kapton[™] itself on a softer or more pliable substrate

Failure Modes in Flex Connectors

Typical failure modes in Au metal Polyimide Flex after implantation in the body

Ref: T. Lebold Retina Implant Minnowbrook Notes 2014

Stress Driven Qualification for Non-Hermetic Packaging

Epoxy is Most Common Thermoset

Bisphenol A epoxy; X=H, for tetrabromobisphenol A; X- Br

Epoxies Absorb Moisture

$$M_t = M_{\infty} \left(1 + k\sqrt{t} \right) \left\{ 1 - \exp \left[-7.3 \left(\frac{Dt}{h^2} \right)^{0.75} \right] \right\}$$

D is the diffusion coefficient

$$D = D_0 \exp\left(-\frac{E_a}{RT}\right)$$

 D_0 is a constant and E_a is the activation energy

Bisphenol A epoxy + anhydride hardener (underfills, coatings, circuit boards etc.)

Source: Xian et. al., Journal of Materials Research and Technology, 31, (2024) 3982 https://doi.org/10.1016/j.jmrt.2024.07.123

Reliability Testing – Package Level

Glenn Shirley, "Plastic Package Reliability" Portland State Univ. ASQ_Short Course, August 2011

122

Typical Failure Modes

InnoCentrix

WHERE SCIENCE IMPACTS BUSINESS

Reliability Testing – Package Level

Test	Test Condition	Test Conditions	
PC Pre-Cond	JEDEC J-STD-020	MSL1 24h bake @ 125°C <u>192h @ 30°C/60%RH</u> Reflow simulation (3times) with Lead free profile Tmax=260°C	L3/260°C
TC Temp. Cycling	JESD22-A104	Ta = -55/+125°C 1000 cycles	
HTSL, High Temp. Storage Life	JESD22-A103	Ta=150°C 1000h	
THS, Temp Humidity Storage	JESD22-A101	Ta=85°C, 85%RH 1000h without bias	
TCoB	JESD22-A103	-40/125C, 500 cycles	TC on assembled board
Drop Test	JESD22-B111	1500G , 100 drops	assembled board

STATS ChipPAC ECTC 2017

VHERE SCIENCE IMPACTS BUSINESS™

InnnCent

Moisture Sensitivity Level (MSL)

Holy Grail

Most Common

	FLOOR LIFE		STANDARD	
LEVEL	TIME	CONDITION	TIME (hours)	CONDITION
1	Unlimited	≤30 °C/85% RH	168 +5/-0	85 °C/85% RH
2	1 year	≤30 °C/60% RH	168 +5/-0	85 °C/60% RH
2a	4 weeks	≤30 °C/60% RH	696 ² +5/-0	30 °C/60% RH
3	168 hours	≤30 °C/60% RH	192 ² +5/-0	30 °C/60% RH
4	72 hours	≤30 °C/60% RH	96 ² +2/-0	30 °C/60% RH
5	48 hours	≤30 °C/60% RH	72 ² +2/-0	30 °C/60% RH
5a	24 hours	≤30 °C/60% RH	48 ² +2/-0	30 °C/60% RH
6	Time on Label (TOL)	≤30 °C/60% RH	TOL	30 °C/60% RH

Moisture Pre-conditioning

MSL Nomenclature:

- Level
- Reflow
 temperature

Example: L3 260°C

Source: JEDEC Std-020D.1

JEDEC STD-020D Reflow Profiles

	Sn-Pb Eutectic	
Condition	Assembly	Pb-Free Assembly
Preheat/soak		
Minimum temperature	100°C	150°C
Maximum temperature	150°C	200°C
Time from minimum to maximum	60 to 120 seconds	60 to 120 seconds
Ramp-up rate	3°C per second maximum	3°C per second maximum
Liquidous temperature (T _L)	183°C	217°C
Time held above <i>T</i> _L	60 to 150 seconds	60 to 150 seconds
Peak package body temperature	Between 220°C and 235°C,	Between 245°C and 260°C, depending on
	depending on size and volume	size and volume
Hold time within 5°C of peak temperature	20 seconds	30 seconds
Ramp-down rate	6°C per second maximum	6°C per second maximum
Time from 25°C to peak temperature	6 minutes maximum	8 minutes maximum

Source: Adapted from JEDEC, IPC/JEDEC J-STD-020D.1, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices, March 2008, table 5-2.

Reflow Profile

Biased HAST Mechanism

Copper dendrites indicate where weak interfaces exist

Biased HAST Failure Mode

- Accelerated by voltage, temperature and humidity
- Seen as early as 20 hrs 156/85 HAST
- Highly dependent on materials & process

Copper dendrites after 40 hours of biased 156/85 HAST

8/2-4/2011

Plastic Package Reliability

57 Portland State

Glenn Shirley, "Plastic Package Reliability" Portland State Univ. ASQ Short Course, August 2011

Biased HAST Reliability – Two Layer Fine Pitch

Structure of test vehicle

Temp / Humidity: 131 deg.C / 85%RH Bias voltage : 6 VDC Time : 500 hrs

Notice use of sputtered titanium tie layer

Sample	Result	Appearance after HAST	
HD8961 (200°C/1h cure)	No short circuit No dendrite No corrosion No delamination	6 V 0 V 6 V	

HD8961 PBO

Stable Resistance Over Time

Unstable Resistance versus Time

In-situ resistance plots of 5 specimens at 130°C/85%RH/3.3V (13 µ spacing)

S. Huh, AS Shin, S. Ham, Ion Migration Failure Mechanism for Organic PCB under Biased HAST, DOI:<u>10.6117/KMEPS.2015.22.1.043</u>

Example of HAST Failure Time

Weibull

S. Huh, AS Shin, S. Ham, Ion Migration Failure Mechanism for Organic PCB under Biased HAST, DOI:<u>10.6117/KMEPS.2015.22.1.043</u>

Scanning Acoustic Microscopy

Source: Alter Technology

Confocal Inspection (C-scan)

Lei Su, et. al., Sensors 2013, 13, 16281-16291; doi:10.3390/s131216281

InnoCentr

IERE SCIENCE IMPACTS BUSINESS

C-SAM of Flip Chip "White Bumps"

Lei Su, et. al., Sensors 2013, 13, 16281-16291; doi:10.3390/s131216281

Delamination Detection Via C-SAM

Delamination in chip dielectric layer causes "white bumps" in C-SAM imaging

IBM Research Report, The Over-Bump Applied Resin Wafer-Level Underfill Process, RC24851 (W0908-142) August 31, 2009

Delamination in between mold compound and die pad shown in C-SAM image

By Sonoscan - Sonoscan, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?cu rid=4360946

Transmission X-ray Inspection

- Imaging of package interior
- Multiple commercial instruments
- Transmission method (no depth discrimination)

Leadframe package

Die bonded PBGA package

After Reflow Inspect Package for Damage

- Popcorning
 - refers to a failure mode where a component, usually a plasticencapsulated microcircuit, cracks or delaminates due to rapid vaporization of absorbed moisture during the high temperatures of the reflow process

Test Methods

inspection

sectioning

Flectrical test

Visual

CSAM

Cross-

Scanning Acoustic Microscope (CSAM) images of PBGA after reflow showing delamination (red)

Source: Yi, S. (2014). Hygrothermally Induced Residual Stresses and Failures in Plastic IC Packages During Reflow Process. In: Hetnarski, R.B. (eds) Encyclopedia of Thermal Stresses. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2739-7_894

Popcorning in Leadframe Package

Glenn Shirley, "Plastic Package Reliability" Portland State Univ. ASQ Short Course, August 2011

Factors Affecting Popcorning

- Peak temperature during soldering
- Moisture content of mold compound
- Die paddle dimensions
- Mold compound thickness under die paddle
- Mold compound adhesion to die and/or lead frame
- Mold compound formulation
 - Inherent moisture absorption of the EMC and filler loading

Popcorn Example

Andrea Chen, RandyHsiao-Yu Lo, Semiconductor Packaging, Materials Interaction and Reliability, CRC Press, 2012

Thermal Cycling

Figure 4. RDL failure after package level TCT.

Solder Fatigue-Induced Crack

Andrea Chen, RandyHsiao-Yu Lo, Semiconductor Packaging, Materials Interaction and Reliability, CRC Press, 2012

Board Level TC Testing

different solders

InnoCentrix

NHERE SCIENCE IMPACTS BUSINESS

HD Microsystems PBO Adhesion Testing

*100/100: all pieces remained after the testing (No failure)

Source: SEMICON Taiwan 2014, Masay Toba, Hitachi Chemical Co., Ltd.

Source: HD Microsystems

