IBM Research

Recent Developments in Advanced Components

Julian Warchall, Ph.D.

Technology Business Development Executive IBM Research Yorktown Heights, NY, USA Julian.Warchall@ibm.com (914) 945-3000

IBM Research Global Footprint

3,000

researchers

100s of disciplines

>150,000 patents granted

Alban

Yorktown

Almaden

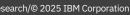
Cambridge

5 National Medals of Science

🔵 Nairobi

Singano

🔵 Delhi


🔵 Bangalore

6 Turing Awards

) Tokyo

Shin-Kawasaki

6 Nobel Laureates

10 Medals of Technology

Dublin 🦲

Warrington

🔵 Zurich

Johannesburg

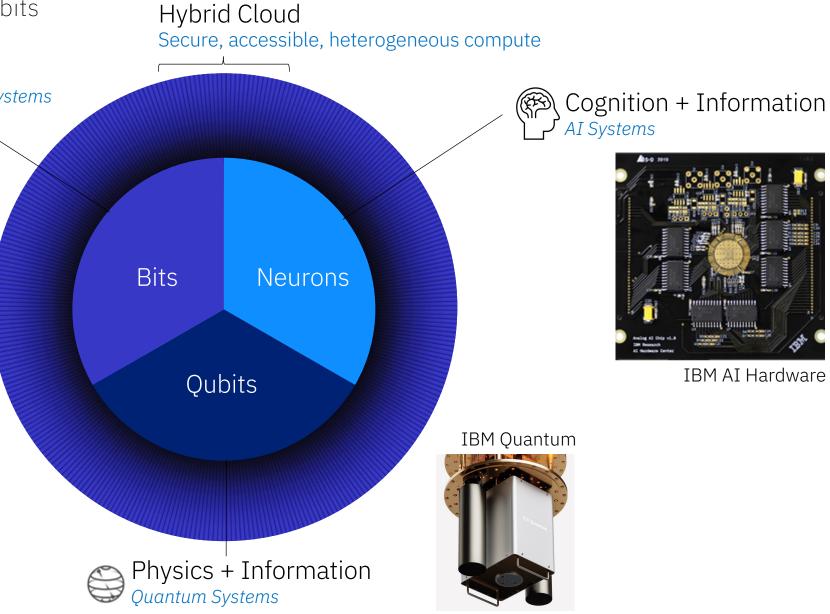
 \rightarrow Yorktown Heights

→ Albany

→ Cambridge

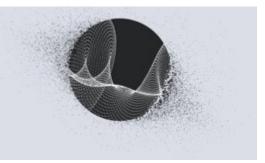
 \rightarrow Almaden

The Future of Computing


Intersection of Bits, Neurons, & Qubits

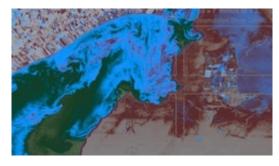
Mathematics + Information *Ultra-Reliable High-Performance Systems*

IBM z16

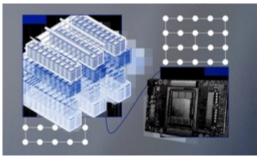


IBM AI Hardware

IBM Research Focus Areas


AI & Machine Learning

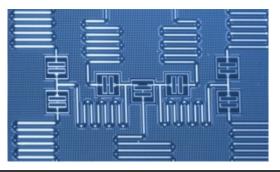
We're developing software, middleware, and hardware to bring frictionless, cloudnative development and use of foundation models to enterprise AI.


Science

At IBM Research, we're tackling some of the most pressing challenges across computer science, materials discovery, climate change, drug discovery, physical sciences and sustainability.

Hybrid Cloud

At IBM Research, we're designing new systems that provide flexible, secure computing environments — from bits to neurons and qubits.

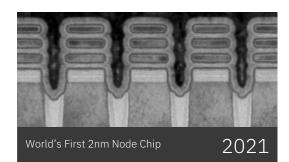

Security

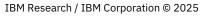
Our pioneering technologies in confidential computing, decentralized trust and a secure supply chain will enable more secure, zerotrust infrastructures for all.

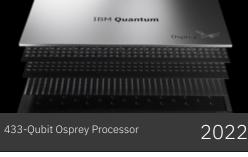
Quantum Computing

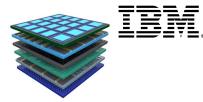
We combine quantum communication and computation to increase system capacity, and uses a hybrid cloud middleware to seamlessly integrate quantum and classical workflows.

Semiconductors


We're pushing the boundaries of logic scaling as well as chiplet technology and design, and with an ecosystem of partners, we're moving innovations from our labs to the manufacturing line.


A Durable Legacy of World-Class Research

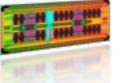


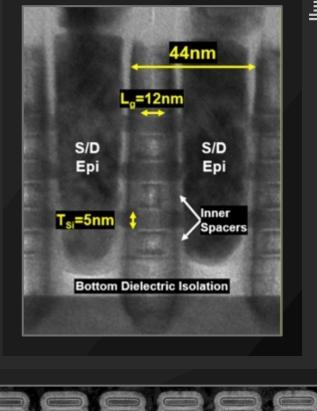


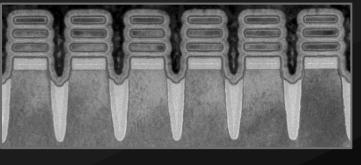
- 2023 3D Heterogenous Integration
- 2022 Artificial Intelligence Unit (AIU)
- **2021** World's First 2-nm Node Chip
- 2016 Quantum Computing in the Cloud
- 2012 Atomic Imaging and Manipulation
- **2011** Watson System for Jeopardy
- 2009 Nanoscale Magnetic Resonance Imaging (MRI)
- 2008 World's First Petaflop Supercomputer (@ Los Alamos)
- 2007 Web-scale Data Mining
- 2005 Cell Processor (Sony Playstation)
- 2004 Blue Gene/L
- 2003 5 Stage Carbo Nanotube Ring Oscillator

2000 Performance Java

- **1998** Silicon on Insulator (SOI)
- 1997 Copper Interconnect Wiring
- **1994** Silicon Germanium (SiGe)
- **1990** Chemically Amplified Photoresist
- 1987 High-Temperature Superconductivity (Nobel Prize)
- **1986** Scanning Tunneling Microscope (Nobel Prize)
- **1980** Reduced Instruction Set Computing (RISC)
- **1979** Thin Film Recording Heads
- **1973** Modern Winchester Hard Disk Drive
- **1971** Speech Recognition
- **1970** Relational Database
- **1967** Fractals
- 1966 One-Device Memory Cell (DRAM)
- 1957 FORTRAN
- **1956** Random Access Memory Accounting Machine (RAMAC)







IBM Research produces the world's first 2 nm technology node.

45% better performance or75% less power consumptioncompared to 7 nm technology.

Big Blue Goes Tiny With World's First 2nm Chip Tech

IBM Semiconductors | © 2025 IBM Corporation

To Make These Chips More Powerful, IBM Is Growing Them Taller

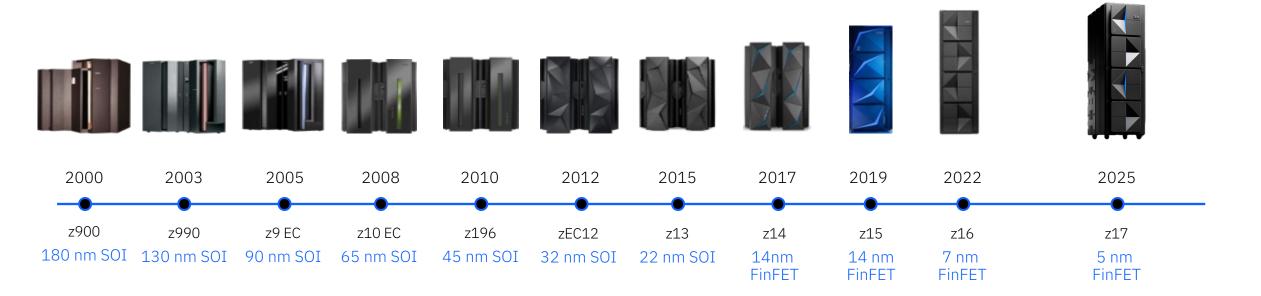
The company reveals a process that it says can cram two-thirds more transistors on a semiconductor, heralding faster and more efficient electronic devices. IBM Unveils World's First 2 nm Chip

The New York Times

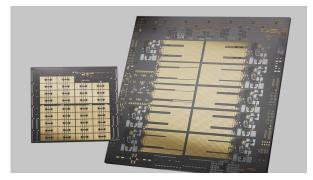
IBM on Thursday announced another leap in miniaturization, a sign of continued U.S. prowess in the technology race.

Rapidus – IBM Partnership

- Strategic partnership to build advanced semiconductor technology and ecosystem in Japan
- Deploy IBM's 2nm node technology into market-leading offering
- Leverage IBM's long history of successful joint development partnerships in semiconductors
- Rapidus engineers working alongside IBM at Albany Nanotech, at IBM Japan, and in Chitose



IBM.

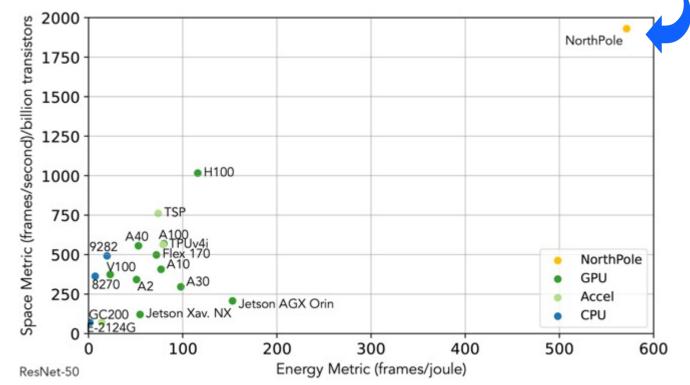

Semiconductor technology is central to IBM's core infrastructure business: The most **reliable**, **scalable**, **and secure** computing system on the planet.

50+ year track record of leading-edge performance and reliability

AI Accelerator Integration for IBM Z Systems

\mathbf{P}	67 of the Fortune 100
Î	45 of the world's top 50 banks
Ø	8 of the top 10 insurers
	4 of the top 5 airlines
	7 of the top 10 global retailers
(((†))) • • • • • •	8 of the top 10 telcos

- Focus: Secure reliable on-prem inference requirements
- AI accelerator (zAIU) integrated into Telum II processor plus AIU Spyre cards for large models
- Datacenter-class inference performance at 1ms response time
- Enabling real-time data inference for applications such as **fraud detection**


AIU NorthPole

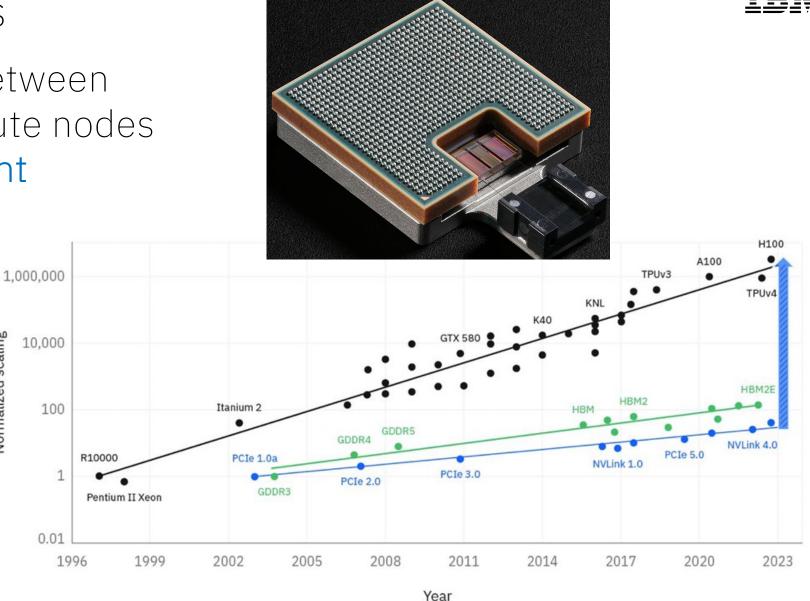
Brain-inspired accelerator chip that supercharges edge AI by working faster with far less power

IBM Semiconductors \mid © 2025 IBM Corporation

Co-Packaged Optics

Closing the gap between large-scale compute nodes **at the speed of light**

Normalized scaling


• **80x higher bandwidth** than today's chip-to-chip communication

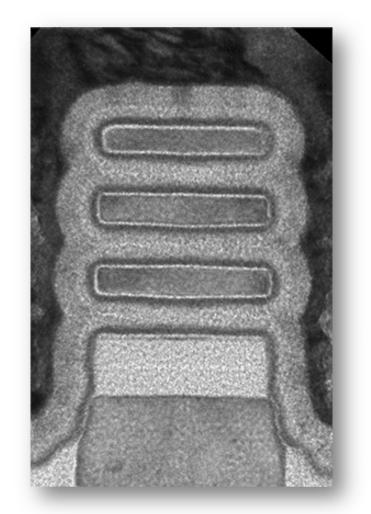
• **Lowers costs** for scaling generative AI:

• Extends length of data center interconnect cables from ~1 to **100s of meters**.

• **5x power reduction** over mid-range electrical interconnects

•Results in **5x faster AI training**

🛛 HW FLOPS 📕 DRAM BW 📃 Interconnect BW 🖾 Communication gap

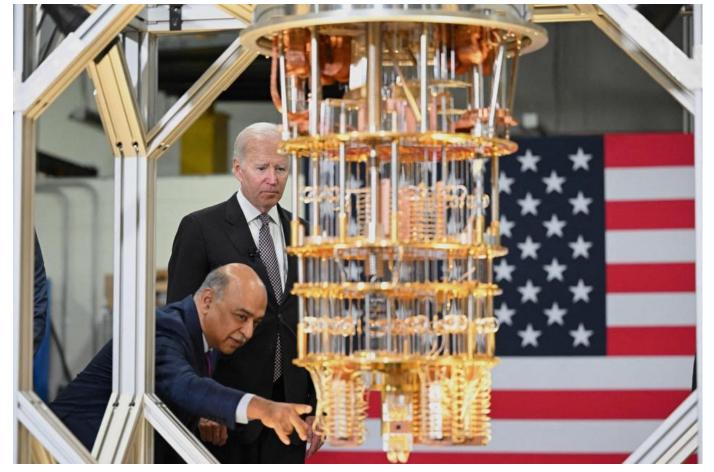

Low Temperature Logic Technology

Nanosheet transistors for high performance low temperature electronics for USG systems and requirements

1 Optimized for operation at a temperature of 77K

2 Enables operation at low power supply voltage to reduce power dissipation and achieve 100% performance boost compared with room temperature electronics iso-power

The transistor nanosheet structure optimized for 77K operation


DARPA

IBM Quantum

Advances beyond classical computing to solve problems too complex for current computers.

A critical technology area that will **transform nearly every industry** dependent on speed and processing power, from agriculture and financial services to health care and defense.

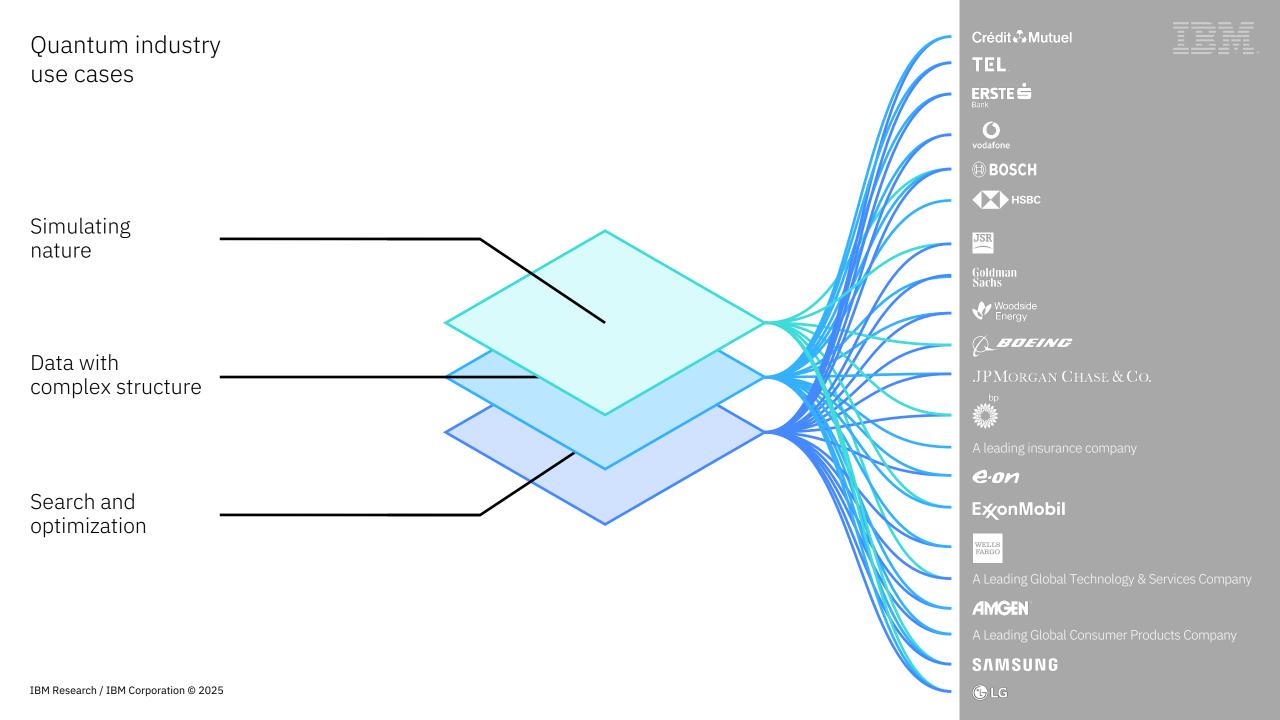
US President Joe Biden listens to IBM CEO Arvind Krishna as he tours the IBM facility in Poughkeepsie, New York, on October 6, 2022. (Photo by MANDEL NGAN/AFP via Getty Images)

Why Quantum?

Known Applications

Simulating Nature

- Physics
- Chemistry
- Materials Science


Data with Complex Structure

- Machine Learning
- Ranking in groups
- Factoring

Other (non-exponential)

- Sampling and Monte-Carlo problems
- Optimization
- Risk analysis and option pricing

Problems we can't adequately address today Problems we hope to address with quantum plus classical computing Problems we can address today classically

												-
	2016-2019 🔹	2020 🔹	2021 🛛	2022 🔹	2023 🔹	2024 🔹	2025	2026	2027	2028	2029	2033+
	Ren quantum circuits on the IBM Quantum Platform	Released multi- dimensional roadmap publicly with initial aim focused on scaling	Enhanced quantum execution speed by 100x with Qiskit Runtime	Brought dynamic circuits to unlock more computations	Enhanced quantum execution speed by 5x with Quantum Serveriess and execution modes	Improve quantum circuit quality and speed to allow SK gates with parametric circuits	Enhance quantum execution speed and parallelization with partitioning and quantum modularity	Improve quantum circuit quality to allow 7.5K gates	Improve quantum circuit quality to allow 10K gates	Improve quantum circuit quality to allow 15K gates	Improve quantum circuit quality to allow 100M gates	Beyond 2033, quantum- centric supercomputers will include 1000% of logical quality unlocking the full power of quantum computing
Data						Platform						
scientists						Qiskit Code 🥥 Assistant	Qiskit Functions 😕 Service	Mapping collections	Specific libraries			General purpose QC libraries
Researchers					Middleware							
					Oiskit Serverless	Qiskit Transpiler 🔗 Service	Resource 🔄	Circuit knitting x p	Intelligent orchestration			Circuit Bbraries
Quantum			Qiskit Runtime Service									
physicists	IBM Quantum Experience 🥝		QASM 3 🥥	Dynamic 🥝 circuits	Execution 🥝 modes	Heron 🥏 (5K)	Flamingo නු (5K)	Flamingo (7.5K)	Flamingo (10K)	Flamingo (15K)	Starling (100M)	Blue Jay (1B)
	Early 🥝	Falcon	۲	Eagle	0	Error mitigation 5k gates	Error mitigation 5k gates	Error mitigation 7.5k gates	Error mitigation 10k gates	Error mitigation 15k gates	Error correction 100M gates	Error correction 18 gates
	Canary Albatross Penguin Prototype Benchmarking 5 qubits 16 qubits 20 qubits 53 qubits 27 qubits		Benchmarking 127 qubits			133 qubits Classical modular	156 qubits Quantum modular	156 qubits Quantum modelar	156 qubits Quantum modular	156 qubits Quantum modular	200 qubits Error corrected	2000 qubits Error corrected
						133x3 = 399 qubits	156x7 = 1092 qubits	156x7 = 1092 qubits	156x7 = 1092 qubits	156x7 = 1092 qubits	modularity	modularity
Innovation Roadmap	•											
Software	IBM Oliskit O	Application 🔗	Oiskit Runtime	Quantum Serverless	AI-enhanced 🔗	Resource 🤗	Scalable circuit 📎 knitting	Error correction decoder				
	Experience Circuit and operator APL with compilation so multiple targets	Modules for domain specific application and algorithm workflows	Performance and abstraction through primitives	Demonstrate concepts of quantum-centric supercomputing	Prototype demonstrations of Al-enhanced circuit transpilation	System partitioning to enable parallel execution	Circuit partitioning with classical reconstruction at HPC scale	Demonstration of a quantum system with real-time error correction decoder				
Hardware	Earty 🥥 Falcon 🤗	Hummingbird 🥝	Eagle 🥝	Osprey 🥥	Condor 🥥	Flamingo 📀	Kookaburra	3	Cockatoo	Starling		
innovation	Canary Penguin Demonstrate scaling 5 quicks 20 quicks to the temp bonds	Demonstrate scaling with multiplexing readout	Demonstrate scaling with MLW and TSV	Enabling scaling with high density signal delivery	Single system scaling and fridge capacity	Demonstrate scaling with modular connectors	scaling with 1	Demonstrate path Io improved quality with logical memory	Demonstrate path to improved quality with logical communication	Demonstrate path to improved quality with logical gates		
	Albatross Pretotype 16 gubits 53 gubits							anti tagʻosi memory				
			Egret 🥥 Tunable coupler		Heron 🥥	Crossbill 🥥						
			demonstration		tunable-couplers	m-couplers						
 Executed by IBM On target 												IBM.
											IBM Quantum / @	2024 IBM Corporation

Inventing What's

Next.

IBM Semiconductors | © 2025 IBM Corporation

