

Microprocessor Reliability Enhancement Under
Ionizing Radiation Using Performance Counters.

Antonio Teijeiro
Electrical and Computer

Engineering
University of Texas at El Paso

El Paso, TX USA
aeteijeiro@miners.utep.edu

Eric MacDonald
Electrical and Computer

Engineering
University of Texas at El Paso

El Paso, TX USA
emac@utep.edu

Rodrigo Romero
Electrical and Computer

Engineering
University of Texas at El Paso

El Paso, TX USA
raromero2@utep.edu

Abstract—Hardware performance counters can be used to

evaluate computational accuracy in the space environment
without performing redundant computations or source code
modification.

Keywords—performance counters, microprocessor reliability,
GPU reliability, COTS in space.

I. INTRODUCTION
Modern global security concerns have inspired a

proliferation of spaceborne remote sensing research. Many of
these approaches are data and processor intensive. However,
high levels of ionizing radiation found in space environments
precludes the introduction of terrestrial high-performance
processor technology to the space environment, due to induced
soft and hard upsets. These upsets are manifested as either
Device Unrecoverable Errors (DUEs) or Silent Data
Corruptions (SDCs). The current state-of -the-art technique is to
harden critical nodes to prevent DUEs and perform redundant
computations to prevent SDCs. Thus, DUEs can be handled
through a system reboot, whereas SDCs can be detected and
corrected through computational redundancy. This SDC
detection and correction approach does not yield optimal
performance, as hardware is utilized to perform redundant tasks
rather than other useful work. If remote sensing and other space
bound enterprises are to continue improvement, a new method
of error detection and correction is necessary – one which does
not require redundancy.

Hardware performance counters, special registers which
track the occurrences of configurable events, are typically used
for quality assurance and software tuning. However, Guererro
Balaguera et al. saw that since hardware performance counters
are already used to perform hardware diagnostics, then it is
natural to extend their utility to upset detection. Software
simulated upsets in the open source FlexGripPlus GPU
confirmed hardware performance counters to be useful for
detecting SEUs affecting branch and warp scheduler activity [1].
In this work, Guererro-Balaguera et al.’s research is successfully
extended to include additional hardware monitoring on a
modern COTS GPU [2]. Supervised and unsupervised machine
learning methods are applied to hardware performance counter
metrics to successfully detect software simulated GPU L0
instruction cache, Load Store Unit (LSU), Arithmetic and Logic

Unit (ALU), Fused Multiply Add (FMA), and Address
Divergence Unit (ADU) SEUs. Although this work focuses on
GPUs for space applications, microprocessors and CPUs
sometimes contain hardware performance counters of identical
benefit.

II. EXPERIMENTAL SETUP
An in-house fault injector based on the principles of

NVIDIA’s deprecated SASSIFI injector was developed for
software fault injection. This tool intercepts GPU binary
compilation following the PTX code generation step. Fault
injection instructions in the form of a nonzero XOR (bit flip)
operation are inserted into the appropriate place in this virtual
GPU assembly code to stimulate an SDC.

The matrix_multiplication_bench benchmark within the
GPU4S benchmark suite was selected for this work [3]. Per its
moniker, this benchmark consists of a multiplication between
two randomly generated matrices of user-selectable size.
Custom Performance Application Programming Interface
(PAPI) hooks were inserted to expose internal GPU hardware
performance counter values to the programmer. Since PAPI can
configure GPU hardware performance counters to concurrently
monitor only up to about 10 of over 250,000 possible hardware
events on the NVIDIA RTX 3090 GPU utilized in this
experiment, only those hardware events most related to activity
in the five selected hardware units are configured for
monitoring.

A Support Vector Machine (SVM) is applied to performance
counter metrics to analyze supervised machine learning utility
for this problem. A Local Outlier Factor model is applied to
determine the utility of unsupervised learning models for this
problem. The success of both types of machine learning models
demonstrates an ability to detect SEUs from hardware
performance counter metrics without requiring access to target
software source code, as discussed further in section III [4].

Our hypothesis is as follows: since L0 instruction cache
holds instructions that are soon to be executed, it is reasonable
to assume that any instructions related to storing information in
memory will result in a cache miss if the destination address
portion of the instruction is corrupted. Likewise, LSU and ALU,
SEUs resulting in erroneous memory address accesses will
result in cache misses. Thus, SEUs involving memory addresses

in an L0 instruction cache, LSU, or ALU should be detectable
from GPU L1/Tex miss stage, frame buffer, and device DRAM
activity, which are the handlers of successively further cache
misses. SEUs affecting FMA kernel thread index calculations
will be detectable from anomalous FMA metric activity, since
the FMA pipeline is used in subsequent portions of the
benchmark. ADU SEUs will also result in anomalous FMA
metric activity due to abnormal branch traversal.

L0 i-cache, LSU, and ALU hardware upsets are simulated
by XOR’ing a store address with 220 – a bit position determined
experimentally to belong to the set index – resulting in a cache
miss. Although each hardware unit is targeted in the same
manner, the architectural level at which the injection occurs
differs. L0 i-cache is targeted at the Stream Multiprocessor (SM)
sub-partition (warp) level, the LSU injection takes place at the
quarter-warp level, and the ALU injection takes place at the
Stream Processor (SP) level. FMA SEUs are simulated by
adding 100,000 – an index far outside the range of thread indices
used to calculate the 104x104 matrix used in this work – to the
result register value of a kernel thread index calculation,
resulting in an early exit for these threads. ADU SEUs are
simulated by XOR’ing a predicate register with 1 to change its
logical state.

A dataset consisting of 1000 golden (non-fault-injected) and
1000 fault-injected runs for each hardware unit is generated.
Thus, a dataset consisting of 2000 sample points is generated for
each hardware unit. The SVM is trained using 3-fold cross
validation across the entirety of each dataset, whereas the LOF
model is trained using all available golden data, then evaluated
on the entirety of each dataset, thus treating fault detection as an
outlier detection problem.

III. RESULTS AND DISCUSSION
Table I displays the SEU detection results using those

metrics experimentally determined to be the most useful for
detecting each type of SEU. Displayed in each row is the
targeted hardware, the name of the metric, an SVM’s accuracy
on its data under K-fold cross validation, and an LOF’s accuracy

on its data. Table II presents SEU detection results for a
sampling of less sensitive metrics which were hypothesized to
be informative. Table III presents results from repeating SEUs
simulated in table II once per Cooperative Thread Array (CTA)
[2].

The results in table II ostensibly oppose the hypothesis, as
several metrics which were hypothesized to be useful yielded
poor detection capability. However, the results in table III from
repeating an SEU across all 49 CTAs reveal a different
phenomenon to be at work. Naturally noisy metrics require more
stimulus than an SEU can provide in order to be useful for upset
detection. This is due to the fact that modern GPUs are
incompatible with a previous version of profiling tools which
allow for performance counters to be read at the individual SM
level, instead of being read from across the GPU. A reversion to
an older GPU model will likely yield the necessary sensitivity
for detecting SEUs using noisier metrics such as these.
Alternatively, one may simply utilize more informative metrics,
such as those experimentally determined and listed in Table I.

Other metrics present a deterministic nature, in which the
events being counted display invariant activity across
benchmark trials. Thus, any small disturbance in their activity
will be discernible to a machine learning model. These are not
process errors, but rather a characteristic of running this
benchmark in isolation. Since the benchmark contains no
variability in execution between golden or injected trials, an
unchanging amount of FMA instructions will be executed each
time. Still other metrics are not strictly deterministic, but instead
present narrow distributions that are similarly sensitive and
specific to the SEUs that were injected in this work.
Lts__t_requests_aperture_device_evict_normal_lookup_miss,
listed in table I, is one such metric. From these observations, it
is clear that the reported high accuracies in table I are due to
sensitive and specific metrics, rather than overfitting [2].

Thus, the results have been determined to be reliable and
generally applicable. In this work, the SVM was utilized to
verify the existence of two distinct classes of data – golden and

TABLE I. BEST SDC DETECTION RESULTS

Targeted
Hardware Metric 3-fold CV

Accuracy
LOF

Accuracy

L0 i-Cache lts__t_requests_aperture_device_evict_normal_lookup_miss.sum

[0.96701649
0.97601199
0.96696697] 91.55%

LSU lts__t_requests_aperture_device_evict_normal_lookup_miss.sum

[0.93553223
0.93703148
0.95495495] 72.6%

ALU lts__t_requests_aperture_device_evict_normal_lookup_miss.sum

[0.86656672
0.87556222
0.87987988] 49.95%

FMA sm__pipe_fma_cycles_active.sum [1. 1. 1.] 100.0

ADU sm__pipe_fma_cycles_active.sum [1. 1. 1.] 100.0

injected – after sampling metrics from golden and injected trials.
However, as a supervised machine learning algorithm,
commercial application of an SVM requires the user to inject
faults into source code to generate training data. Since
commercial software is often closed-source, this presents a
serious limitation. Therefore, LOF success is important to note.
The LOF model was trained using noisy golden data, then tested
on the entirety of the 2000 sample golden and injected dataset
for each metric. The LOF also reported up to 100% accuracy.
Therefore, it is possible to treat SEU SDC detection as an
anomaly detection problem by profiling closed source software
and training a novelty detection model, such as LOF, on the

resulting golden data. Then the model may be deployed to its
intended environment [2].

IV. CONCLUSION AND FUTURE WORK
An alternative approach to redundant computation methods

currently employed for SDC detection will aid advancement in
spaceborne remote sensing applications. Here, a method
utilizing hardware performance counters, which are registers
that maintain the number of occurrences of configurable
hardware events within a processor, is expanded on. This
research expands on previous work which utilized hardware that
is not suitable for practical spaceborne applications, by

TABLE III. LESS SENSITIVE METRICS, REPEATED SEU

Targeted
Hardware Metric 3-fold CV

Accuracy
LOF Accuracy

L0 i-Cache l1tex__t_bytes_pipe_lsu_lookup_miss.sum [1. 1. 1.] 93.85%
L0 i-Cache

fbpa__dram_write_bytes.sum
[0.98650675
0.98350825
0.98048048]

91.6%

LSU l1tex__t_bytes_pipe_lsu_lookup_miss.sum [1. 1. 1.] 98.85%
LSU

fbpa__dram_write_bytes.sum
[0.95352324
0.93853073
0.95195195]

86.75%

ALU
l1tex__t_bytes_pipe_lsu_lookup_miss.sum

[0.98650675
0.988006
0.996997]]

98.35%

ALU
fbpa__dram_write_bytes.sum

[0.7946027
0.79610195
0.80930931]

70.3.%

TABLE II. LESS SENSITIVE METRICS (SEU)

Targeted
Hardware Metric 3-fold CV

Accuracy LOF Accuracy

L0 i-Cache
 l1tex__t_bytes_pipe_lsu_lookup_miss.sum

[0.79910045
0.77961019
0.75825826]

69.8%

L0 i-Cache
 fbpa__dram_write_bytes.sum

[0.48275862
0.48125937
0.51201201]

48.8%

LSU
 l1tex__t_bytes_pipe_lsu_lookup_miss.sum

[0.63568216
0.63118441
0.63963964]

53.45%

LSU
 fbpa__dram_write_bytes.sum

[0.48575712
0.47826087
0.503003]

51.05%

ALU
l1tex__t_bytes_pipe_lsu_lookup_miss.sum

[0.57721139
0.5892054
0.56606607]

49.1%

ALU
fbpa__dram_write_bytes.sum

[0.55922039
0.51124438
0.51951952]

50.25%

evaluating the utility of previously presented metrics as well as
introducing new ones on a modern COTS GPU. The success of
this approach indicates that further research on this approach is
warranted.

Future work includes the evaluation of this work under
hardware fault injection conditions. In particular, proton beam
testing at low LETs to evaluate the suitability of this technique
for SEU SDC detection is necessary. If successful, then MEU
SDC detection may be evaluated, perhaps as a linear
phenomenon. Regression tests utilizing an older GPU
compatible with previous generation profiling tools (i.e. CUPTI)
may prove helpful for other GPU hardware, although
unnecessary for the presently targeted hardware.

REFERENCES

[1] Guerrero-Balaguera, J.-D., Condia, J. E., & Reorda, M. S. (2021). Using
hardware performance counters to support infield GPU testing. 2021 28th
IEEE International Conference on Electronics, Circuits, and Systems
(ICECS). https://doi.org/10.1109/icecs53924.2021.9665511.

[2] Teijeiro, A. E. (2023, November 25). GitHub.
https://github.com/aeteijeiro/ThesisDocument.

[3] Kosmidis, L., Rodriguez, I., Jover, Á., Alcaide, S., Lachaize, J., Abella,
J., Notebaert, O., Cazorla, F. J., & Steenari, D. (2020). GPU4S: Embedded
gpus in space - latest project updates. Microprocessors and Microsystems,
77, 103143. https://doi.org/10.1016/j.micpro.2020.103143.

[4] Teijeiro, A. E. (2023, November 25). GitHub.
https://github.com/aeteijeiro/ThesisWork.

	I. Introduction
	II. Experimental Setup
	III. Results and Discussion
	IV. Conclusion and Future Work
	References

	TABLE III. Less Sensitive Metrics, Repeated SEU

