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Abstract—Hardware performance counters can be used to 

evaluate computational accuracy in the space environment 
without performing redundant computations or source code 
modification. 
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I. INTRODUCTION 
Modern global security concerns have inspired a 

proliferation of spaceborne remote sensing research. Many of 
these approaches are data and processor intensive. However, 
high levels of ionizing radiation found in space environments 
precludes the introduction of terrestrial high-performance 
processor technology to the space environment, due to induced 
soft and hard upsets. These upsets are manifested as either 
Device Unrecoverable Errors (DUEs) or Silent Data 
Corruptions (SDCs). The current state-of -the-art technique is to 
harden critical nodes to prevent DUEs and perform redundant 
computations to prevent SDCs. Thus, DUEs can be handled 
through a system reboot, whereas SDCs can be detected and 
corrected through computational redundancy. This SDC 
detection and correction approach does not yield optimal 
performance, as hardware is utilized to perform redundant tasks 
rather than other useful work. If remote sensing and other space 
bound enterprises are to continue improvement, a new method 
of error detection and correction is necessary – one which does 
not require redundancy. 

Hardware performance counters, special registers which 
track the occurrences of configurable events, are typically used 
for quality assurance and software tuning. However, Guererro 
Balaguera et al. saw that since hardware performance counters 
are already used to perform hardware diagnostics, then it is 
natural to extend their utility to upset detection. Software 
simulated upsets in the open source FlexGripPlus GPU 
confirmed hardware performance counters to be useful for 
detecting SEUs affecting branch and warp scheduler activity [1]. 
In this work, Guererro-Balaguera et al.’s research is successfully 
extended to include additional hardware monitoring on a 
modern COTS GPU [2]. Supervised and unsupervised machine 
learning methods are applied to hardware performance counter 
metrics to successfully detect software simulated GPU L0 
instruction cache, Load Store Unit (LSU), Arithmetic and Logic 

Unit (ALU), Fused Multiply Add (FMA), and Address 
Divergence Unit (ADU) SEUs. Although this work focuses on 
GPUs for space applications, microprocessors and CPUs 
sometimes contain hardware performance counters of identical 
benefit.  

II. EXPERIMENTAL SETUP 
An in-house fault injector based on the principles of 

NVIDIA’s deprecated SASSIFI injector was developed for 
software fault injection. This tool intercepts GPU binary 
compilation following the PTX code generation step. Fault 
injection instructions in the form of a nonzero XOR (bit flip) 
operation are inserted into the appropriate place in this virtual 
GPU assembly code to stimulate an SDC.  

The matrix_multiplication_bench benchmark within the 
GPU4S benchmark suite was selected for this work [3]. Per its 
moniker, this benchmark consists of a multiplication between 
two randomly generated matrices of user-selectable size. 
Custom Performance Application Programming Interface 
(PAPI) hooks were inserted to expose internal GPU hardware 
performance counter values to the programmer. Since PAPI can 
configure GPU hardware performance counters to concurrently 
monitor only up to about 10 of over 250,000 possible hardware 
events on the NVIDIA RTX 3090 GPU utilized in this 
experiment, only those hardware events most related to activity 
in the five selected hardware units are configured for 
monitoring. 

A Support Vector Machine (SVM) is applied to performance 
counter metrics to analyze supervised machine learning utility 
for this problem. A Local Outlier Factor model is applied to 
determine the utility of unsupervised learning models for this 
problem. The success of both types of machine learning models 
demonstrates an ability to detect SEUs from hardware 
performance counter metrics without requiring access to target 
software source code, as discussed further in section III [4].   

Our hypothesis is as follows: since L0 instruction cache 
holds instructions that are soon to be executed, it is reasonable 
to assume that any instructions related to storing information in 
memory will result in a cache miss if the destination address 
portion of the instruction is corrupted. Likewise, LSU and ALU, 
SEUs resulting in erroneous memory address accesses will 
result in cache misses. Thus, SEUs involving memory addresses 



in an L0 instruction cache, LSU, or ALU should be detectable 
from GPU L1/Tex miss stage, frame buffer, and device DRAM 
activity, which are the handlers of successively further cache 
misses. SEUs affecting FMA kernel thread index calculations 
will be detectable from anomalous FMA metric activity, since 
the FMA pipeline is used in subsequent portions of the 
benchmark. ADU SEUs will also result in anomalous FMA 
metric activity due to abnormal branch traversal.  

L0 i-cache, LSU, and ALU hardware upsets are simulated 
by XOR’ing a store address with 220 – a bit position determined 
experimentally to belong to the set index – resulting in a cache 
miss. Although each hardware unit is targeted in the same 
manner, the architectural level at which the injection occurs 
differs. L0 i-cache is targeted at the Stream Multiprocessor (SM) 
sub-partition (warp) level, the LSU injection takes place at the 
quarter-warp level, and the ALU injection takes place at the 
Stream Processor (SP) level. FMA SEUs are simulated by 
adding 100,000 – an index far outside the range of thread indices 
used to calculate the 104x104 matrix used in this work – to the 
result register value of a kernel thread index calculation, 
resulting in an early exit for these threads. ADU SEUs are 
simulated by XOR’ing a predicate register with 1 to change its 
logical state.  

A dataset consisting of 1000 golden (non-fault-injected) and 
1000 fault-injected runs for each hardware unit is generated. 
Thus, a dataset consisting of 2000 sample points is generated for 
each hardware unit. The SVM is trained using 3-fold cross 
validation across the entirety of each dataset, whereas the LOF 
model is trained using all available golden data, then evaluated 
on the entirety of each dataset, thus treating fault detection as an 
outlier detection problem.  

III. RESULTS AND DISCUSSION 
Table I displays the SEU detection results using those 

metrics experimentally determined to be the most useful for 
detecting each type of SEU. Displayed in each row is the 
targeted hardware, the name of the metric, an SVM’s accuracy 
on its data under K-fold cross validation, and an LOF’s accuracy 

on its data. Table II presents SEU detection results for a 
sampling of less sensitive metrics which were hypothesized to 
be informative. Table III presents results from repeating SEUs 
simulated in table II once per Cooperative Thread Array (CTA) 
[2]. 

The results in table II ostensibly oppose the hypothesis, as 
several metrics which were hypothesized to be useful yielded 
poor detection capability. However, the results in table III from 
repeating an SEU across all 49 CTAs reveal a different 
phenomenon to be at work. Naturally noisy metrics require more 
stimulus than an SEU can provide in order to be useful for upset 
detection. This is due to the fact that modern GPUs are 
incompatible with a previous version of profiling tools which 
allow for performance counters to be read at the individual SM 
level, instead of being read from across the GPU. A reversion to 
an older GPU model will likely yield the necessary sensitivity 
for detecting SEUs using noisier metrics such as these. 
Alternatively, one may simply utilize more informative metrics, 
such as those experimentally determined and listed in Table I.  

Other metrics present a deterministic nature, in which the 
events being counted display invariant activity across 
benchmark trials. Thus, any small disturbance in their activity 
will be discernible to a machine learning model. These are not 
process errors, but rather a characteristic of running this 
benchmark in isolation. Since the benchmark contains no 
variability in execution between golden or injected trials, an 
unchanging amount of FMA instructions will be executed each 
time. Still other metrics are not strictly deterministic, but instead 
present narrow distributions that are similarly sensitive and 
specific to the SEUs that were injected in this work. 
Lts__t_requests_aperture_device_evict_normal_lookup_miss, 
listed in table I, is one such metric. From these observations, it 
is clear that the reported high accuracies in table I are due to 
sensitive and specific metrics, rather than overfitting [2].  

Thus, the results have been determined to be reliable and 
generally applicable. In this work, the SVM was utilized to 
verify the existence of two distinct classes of data – golden and 

TABLE I.  BEST SDC DETECTION RESULTS  

 
Targeted 
Hardware Metric 3-fold CV 

Accuracy 
LOF 

Accuracy 

L0 i-Cache lts__t_requests_aperture_device_evict_normal_lookup_miss.sum 

[0.96701649 
0.97601199 
0.96696697] 91.55% 

LSU lts__t_requests_aperture_device_evict_normal_lookup_miss.sum 

[0.93553223 
0.93703148 
0.95495495] 72.6% 

ALU lts__t_requests_aperture_device_evict_normal_lookup_miss.sum 

[0.86656672 
0.87556222 
0.87987988] 49.95% 

FMA sm__pipe_fma_cycles_active.sum [1. 1. 1.] 100.0 

ADU sm__pipe_fma_cycles_active.sum [1. 1. 1.] 100.0 
 



injected – after sampling metrics from golden and injected trials. 
However, as a supervised machine learning algorithm, 
commercial application of an SVM requires the user to inject 
faults into source code to generate training data. Since 
commercial software is often closed-source, this presents a 
serious limitation. Therefore, LOF success is important to note. 
The LOF model was trained using noisy golden data, then tested 
on the entirety of the 2000 sample golden and injected dataset 
for each metric. The LOF also reported up to 100% accuracy. 
Therefore, it is possible to treat SEU SDC detection as an 
anomaly detection problem by profiling closed source software 
and training a novelty detection model, such as LOF, on the 

resulting golden data. Then the model may be deployed to its 
intended environment [2]. 

IV. CONCLUSION AND FUTURE WORK 
An alternative approach to redundant computation methods 

currently employed for SDC detection will aid advancement in 
spaceborne remote sensing applications. Here, a method 
utilizing hardware performance counters, which are registers 
that maintain the number of occurrences of configurable 
hardware events within a processor, is expanded on. This 
research expands on previous work which utilized hardware that 
is not suitable for practical spaceborne applications, by 

TABLE III.              LESS SENSITIVE METRICS, REPEATED SEU 
 
 

Targeted 
Hardware Metric 3-fold CV 

Accuracy 
LOF Accuracy 

L0 i-Cache l1tex__t_bytes_pipe_lsu_lookup_miss.sum [1. 1. 1.] 93.85% 
L0 i-Cache 

fbpa__dram_write_bytes.sum 
[0.98650675 
0.98350825 
0.98048048] 

91.6% 

LSU l1tex__t_bytes_pipe_lsu_lookup_miss.sum [1. 1. 1.] 98.85% 
LSU 

fbpa__dram_write_bytes.sum 
[0.95352324 
0.93853073 
0.95195195] 

86.75% 

ALU 
l1tex__t_bytes_pipe_lsu_lookup_miss.sum 

[0.98650675 
0.988006   
0.996997]] 

98.35% 

ALU 
fbpa__dram_write_bytes.sum 

[0.7946027  
0.79610195 
0.80930931] 

70.3.% 

 

TABLE II.  LESS SENSITIVE METRICS (SEU)  

 
Targeted 
Hardware Metric 3-fold CV 

Accuracy LOF Accuracy 

L0 i-Cache 
 l1tex__t_bytes_pipe_lsu_lookup_miss.sum 

[0.79910045 
0.77961019 
0.75825826] 

69.8% 

L0 i-Cache 
 fbpa__dram_write_bytes.sum 

[0.48275862 
0.48125937 
0.51201201] 

48.8% 

LSU 
 l1tex__t_bytes_pipe_lsu_lookup_miss.sum 

[0.63568216 
0.63118441 
0.63963964] 

53.45% 

LSU 
 fbpa__dram_write_bytes.sum 

[0.48575712 
0.47826087 
0.503003] 

51.05% 

ALU 
l1tex__t_bytes_pipe_lsu_lookup_miss.sum  

[0.57721139 
0.5892054  
0.56606607] 

49.1% 

ALU 
fbpa__dram_write_bytes.sum 

[0.55922039 
0.51124438 
0.51951952] 

50.25% 

 



evaluating the utility of previously presented metrics as well as 
introducing new ones on a modern COTS GPU. The success of 
this approach indicates that further research on this approach is 
warranted.  

Future work includes the evaluation of this work under 
hardware fault injection conditions. In particular, proton beam 
testing at low LETs to evaluate the suitability of this technique 
for SEU SDC detection is necessary. If successful, then MEU 
SDC detection may be evaluated, perhaps as a linear 
phenomenon. Regression tests utilizing an older GPU 
compatible with previous generation profiling tools (i.e. CUPTI) 
may prove helpful for other GPU hardware, although 
unnecessary for the presently targeted hardware. 
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